Discovery, unconstrained by geography.

Inder Monga,
Interim Director, CTO, ESnet

ESnet is starting Run 3 in August

ESnet by Facts

The basic facts (new or notable):

High-speed international networking facility, optimized for DOE science missions:

- connecting 50 labs, plants and facilities with >150 networks, universities, research partners globally
- 340Gbps transatlantic extension in production (Dec 2014)
- university connections to better serve LHC science
- \$35M in FY15, 42FTE
- older than commercial Internet, growing ~twice as fast
- the DOE user facility that serves all others

\$62M ARRA grant funded 100G upgrade in 2011:

- fiber assets + access to spectrum, shared with Internet2
- new era of optical networking, abundant capacity
- world's first 100G network at continental scale

Culture of urgency:

- several recent awards
- 80% engineers, highly motivated

Our vision:

Scientific progress will be **completely unconstrained** by the physical location of instruments, people, computational resources, or data.

5th Generation ESnet: Current Network Footprint

ESnet is a dedicated mission network engineered to accelerate a broad range of science outcomes.

We do this by offering unique capabilities, and optimizing the network for data acquisition, data placement, data sharing, data mobility.

One of the oldest, fastest parts of the Internet.

Densely interconnected to institutions, R&E networks, commercial service providers, cloud providers etc.

150+ peers, 300+ peering points, 1.4 Tbps of peering capacity

Small but effective organization

Punching above our weight.

- Brazil (422)
- UK (180)
- Czech Republic (142)
- Netherlands (138)
- Croatia (112)
- Internet2 (>100)
- Hungary (94)
- Australia (80)
- Norway (78)
- Switzerland (76)

- Greece (68)
- France (66)
- Italy (61)
- Germany (54)
- Ireland (52)
- Slovenia (51)
- Belgium (50)
- Portugal (47)
- ESnet (42)

Caveats: varying service and business models make comparisons difficult, but the large-scale pattern is instructive. (Headcount numbers interpolated from bar graph on page 80 of the most recent *GÉANT Association Compendium*, or described elsewhere in that report.)

A reputation for innovation and excellence.

"The entire staff conscientiously and continually lead their field."

[report from recent operational review]

Big Data on ESnet

Overall Traffic doubled, LHCONE up 1500+% in Run 2 [January 2015 – May 2016]

Transatlantic traffic is healthy

We even backup partner NREN's trans-atlantic traffic...

..across multiple exchange points

Continually planning for growth

Traffic Volume

★ February 2016 ★

	Bytes	Percent of Total	One Month Change	One Year Change	
OSCARS	10.46 PB	25.2%	+0.0147%	+148%	Pt-to-pt circuits
HCONE	11.22 PB	27.0%	+3.90%	+770%	LHCONE (T1-T1/2) traffic
Normal traffic	19.82 PB	47.8%	+9.49%	+77.7%	ESnet
Total 17 6/10/16	41.49 PB		+5.44%	+149%	imonga at es dot net

ESnet: an Exascale facility in 2020

Projected Traffic Reaches

1 Exabyte Per Month. by ~2020 10 EB/Mo. by ~2024

Slide from Harvey Newman

Strategy and Investments

ESnet Research and Software Development Portfolio

Funded Research Next-Generation Architectures

Network Software Tools Development

Emerging global consensus around

Science DMZ architecture.

- 1. Friction-free network path
- Dedicated data transfer nodes (DTNs)
 - 3. Performance monitoring (perfSONAR)

>120 universities in the US have deployed this ESnet architecture.

NSF has invested >>\$60M to accelerate adoption.

Australian, Canadian universities following suit.

http://fasterdata.es.net/science-dmz/

Coming next? Evolution of Science DMZ as a regional and national platform.

Pacific Research Platform initiative, lead by Larry Smarr (Calit2/UCSD)

- first large-scale effort to coordinate and integrate
 Science DMZs
- participation by all major
 California R&E institutions,
 CENIC, ESnet

Isolated apps are less flexible than platforms.

Single-purpose apps:

Programmable platform:

admin@NetShell> cd /lib/layer2/demo
changed to: /lib/layer2/demo

admin@NetShell> vpn create vpn1 VPN vpn1 is created successfully.

admin@NetShell> vpn vpn1 addpop amst Pop amst is added into VPN vpn1 successfully.

admin@NetShell> vpn vpn1 addpop cern
Pop cern is added into VPN vpn1 successfully.

admin@NetShell> vpn vpn1 addsite amst
The site amst is added into VPN vpn1 successfully

admin@NetShell> 🗌

An architecture we foresee: ESnet as *platform* for concurrent, domain-specific network apps.

Requires 'network operating system' for science.

- early-stage project (LBNL LDRD)
- multiple challenges in creating flexible, stable app execution environment

We envision apps that will express high-level *intentions*:

- create and manage virtual networks
- enable programmatic resource allocation
- optimize link utilization

Future apps could support:

- NDN for climate; data management for CMS, ATLAS, Belle-II; security overlay for KBase; replication for ESGF; detector / HPC coupling for light sources
- workflows we haven't imagined

ESnet's 100G SDN Testbed – significant footprint growth and dedicated bandwidth. Unique within community

SENSE: SDN for End-to-end Networked Science for Extreme-Scale Science

Inder Monga [Lead-PI] (ESnet), Phil Demar (FNAL), Harvey Newman (Caltech), Linda Winkler (ANL), Tom Lehman (UMD/MAX), Damain Hazen (NERSC) Mar 2016 – Feb 2019

Goal

• Leverage the emerging Software Defined Network (SDN) capabilities to develop intelligent, federated, endto-end, science networking architecture friendly to data-intensive and network-aware distributed science applications

Impacts

- Present geographically distributed resources (datacenters, instruments, etc.) as components of a local facility
- Simplifies complex massive datasets distribution with coordinated, multi-domain, smart and secure services
- Enable seamless application-network interaction for new near real-time distributed computing and data analytics

SENSE SDN Control Plane Architecture for End-to-End Orchestration

Figure 1. SENOS End-to-End Orchestration

Named-Data Networking collaboration with NSF funded Colorado State CC* project continues to engage DOE science initiatives

- An NSF-funded Future Internet Architecture in which clients express intent for data objects to the network
- Collaborating with Colorado State University, PI Christos Papadopoulos, to investigate applicability for climate data sets.
 - Mentoring the project and providing focus: enabling high-speed data transfer, data management and caching strategies for large scientific data sets.
- CSU collaborators and ESnet invited to presented NDN results at three conferences,
 CHEP 2015, NDN Comm 2015 and ACM Conference on Information Centric Networks
 - ESnet invited talks to give talks at ACM and NDNComm
- ESnet is hosting a large part of an NDN testbed and dedicated 10G to NDN research.

Superfacility: our global science complex can become more than the sum of its parts.

Real-time analysis of 'slot-die' technique for printing organic photovoltaics, using ALS + NERSC (SPOT Suite for reduction, remeshing, analysis) + OLCF (HipGISAXS running on Titan w/ 8000 GPUs).

http://www.es.net/news-and-publications/esnet-news/2015/esnet-paves-way-for-hpc-superfacility-real-time-beamline-experiments/

Results presented at March 2015 meeting of American Physical Society by Alex Hexemer.

ESnet Research and Software Development Portfolio

Funded Research Next-Generation Architectures

Network Software Tools
Development

New Portal Feature: Monthly Traffic Volume

- Portal version of monthly stats
- Same data, new visualization
- Provides summary view
 - Percent change vs. last month
 - Percent change vs. same month last year
- Explore contribution of OSCARS or LHCONE
- Explore contribution of interfaces that match a pattern

https://my.es.net/network/traffic-volume/

New Portal Feature: LHCONE

- Provide a place for all ESnet connected LHCONE participants to see traffic
- Flow data provides insight on how traffic is flowing over the VPRN
- Showcases traffic from Universities onto ESnet

https://my.es.net/collaborations/lhcone/

Time Series Charts

Time Series Charts

Network Diagrams

Network Diagrams

Pond: Time Series Operations

- We have lots of time series data: SNMP, netflow, log messages, etc
- Need a common abstraction and wire format for this data
- Provides common operations

Animation showing how Pond generates summary rollups

Open Source

Good news everyone, it's all open source!

- http://software.es.net/pond/
- http://software.es.net/react-timeseries-charts/
- http://software.es.net/react-network-diagrams/

Motivation

- Develop a common toolkit for visualizing networks
- Lower barrier to entry
- Allow people to use what we've built so they don't have to build their own
- Encourage others to share their visualizations
- Give back to the community

Visualization of data is good, but not enough

MyESnet Home Network - Sites - Facilities - Collaborations - Login | Register

Network Analytics

- Data being generated by the network every few seconds but not analysed or available for real-time analysis
 - The ability to ask questions of historical network data, and get answers
 - The answers updated with new data in near real-time
 - SNMP data, Flow data, Topology data, etc...
- Smart Cities, IoT, Smart Grid have common problems

Leverage cloud computing tools to put together a *network analytics* pipeline

In 1986, physics community made two 'modest requests':

- 1. "What we can do on LANs today is indicative of what we wish to be able to do on wide area networks."
- 2. "Just as we expect a computer to perform as if we are the only user, we expect the network to give that same appearance."

In conclusion:

- Global science networks are not ISPs rather, extensions of your discovery instruments.
- HEP's 'modest requests' from 1986 are in the process of being fulfilled.
 - 'discovery unconstrained by geography' is explicit vision of ESnet
 - and virtualization is a global initiative
- Design patterns, architectures, workflows and challenges from HEP science are now crossing over to domains.

In conclusion:

- Global science networks are not ISPs rather, extensions of your discovery instruments.
- HEP's 'modest requests' from 1986 are in the process of being fulfilled.
 - 'discovery unconstrained by geography' is explicit vision of ESnet
 - and virtualization is a global initiative
- Design patterns, architectures, workflows and challenges from HEP science are now crossing over to domains.
- HEP has been pushing the boundaries of networking for three decades.
 - please keep it up!
- It's time to make the next modest requests
 - we are taking orders for 2018.

In conclusion, a reminder about our vision:

Scientific progress will be **completely unconstrained** by the physical location of instruments, people, computational resources, or data.

Big Science Data in Motion = Elephant Flow! IoT watching LOL Cats = Mice flow!

Elephant Data vs. Mice Data Behavior

