ATLAS bHbb Analysis

Tim Barklow (SLAC) SLAC/Stanford ATLAS and Theory Joint Jamboree Session Jun 13, 2016 The ATLAS bHbb analysis is a search for BSM Higgs and H(125) production in association with one or two b-jets (called tag b-jets) followed by $H \rightarrow b\overline{b}$. QCD background is suppressed by requiring the detection of one or two tag b-jets in addition to the two b-jets from the Higgs decay. A signal event consists of Higgs decay b-jets 1 & 2 with p_{T1} , $p_{T2} \approx \frac{M_H}{2}$, and one or two tag b-jets with 20 GeV $< p_{Ttag} < \min(p_{T1}, p_{T2})$.

In the 5 flavor scheme (5FS) the following processes lead to $b\overline{b}$ fusion production of Higgs in association with one or two b-jets:

General 2HDM Couplings

Table 1 Tree-level fermion couplings of the *H* and *A* bosons in the 2HDM subject to symmetries that suppress FCNC. The couplings are normalized to the SM values and are given in the limit that the couplings of the light scalar boson *h* are SM-like. Here *U*, *D*, and *E* refer to up-type quarks, down-type quarks and charged leptons, respectively, and tan β is the ratio of the vacuum expectation values of the two scalar doublets.

	$H\overline{U}U$	$H\overline{D}D$	$H\overline{E}E$	$iA\overline{U}\gamma_5U$	$iA\overline{D}\gamma_5D$	$iA\overline{E}\gamma_5E$
	ξ^u_H	ξ^d_H	${\xi}^e_H$	ξ^u_A	ξ^d_A	ξ^e_A
Туре І	$-\cot\beta$	$-\cot\beta$	$-\cot\beta$	$-\cot\beta$	$\cot \beta$	$\cot \beta$
Type II (MSSM like)	$-\cot\beta$	$\tan \beta$	$\tan \beta$	$-\cot\beta$	$-\tan\beta$	$-\tan\beta$
Type III (lepton specific)	$-\cot\beta$	$-\cot\beta$	$\tan \beta$	$-\cot\beta$	$\cot \beta$	– tan β
Type IV (flipped)	$-\cot\beta$	$\tan \beta$	$-\cot\beta$	$-\cot\beta$	$-\tan\beta$	$\cot \beta$

3

PhD thesis of Katie Malone with help from Giacinto P., Su Dong, and T.B. ATL-COM-PHYS-2014-089

Signal MC Samples MadgraphPythia_AUET2B_CTEQ6L1

z 0	A/H(bb) branching ratio as a function of mA			
10°	0000000000000000000000000000000000000	Dataset ID	mass (GeV)	Width (GeV)
-		181120	250	1.68
		181121	280	1.92
		181122	310	2.50
ţi		181123	350	3.23
la ra	•	181124	400	3.93
	• • A, tb=5	181125	450	4.71
brai		181126	500	5.59
-	$ \begin{array}{c} H, tb=10 \\ \bullet \bullet A, tb=20 \end{array} $	181127	550	6.84
-		181128	600	8.11
-	→ → H, tb=30 → A, tb=40	181129	650	9.26
	$ \begin{array}{c} H, tb=40 \\ \bullet \bullet A, tb=60 \end{array} $	181130	700	10.3
10-2	<u>— H, tb=60</u>	181131	800	12.5
100	m A [GeV]			

Background MC Sample 189907.Sherpa_CT10_bb_MassiveCB_2Bjets

subprocess	cross section (pb)
$jj \rightarrow b\bar{b}jj$	58531
$jj \rightarrow b\bar{b}j$	33411
$bj \rightarrow bjj + bj \rightarrow bjj$	22147
$bj \rightarrow bjjj + \bar{b}j \rightarrow \bar{b}jjj$	16282
$bj \rightarrow bj + \bar{b}j \rightarrow \bar{b}j$	12135
$jj \rightarrow b\bar{b}$	1672
$cj \rightarrow cb\bar{b}j + \bar{c}j \rightarrow \bar{c}b\bar{b}j$	1602
$bj \rightarrow bb\bar{b}j + \bar{b}j \rightarrow \bar{b}b\bar{b}j$	997
$jj \rightarrow b\bar{b}c\bar{c}$	776
$cj \rightarrow cb\bar{b} + \bar{c}j \rightarrow \bar{c}b\bar{b}$	681
$bj \rightarrow bb\bar{b} + \bar{b}j \rightarrow \bar{b}b\bar{b}$	387
$jj \rightarrow b\bar{b}b\bar{b}$	376
$b\bar{c} \rightarrow b\bar{c}j + bc \rightarrow bcj$	206
$bc \rightarrow bcj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j$	194
$b\bar{c} \rightarrow b\bar{c}jj + \bar{b}c \rightarrow \bar{b}cjj$	143
$bc \rightarrow bcjj + b\bar{c} \rightarrow b\bar{c}jj$	136
$bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}$	122
$b\bar{c} \rightarrow b\bar{c} + \bar{b}c \rightarrow \bar{b}c$	121
$b\bar{b} \rightarrow b\bar{b}j$	62
$bb \rightarrow bbj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}j$	53
$b\bar{b} \rightarrow b\bar{b}jj$	44
$bb \rightarrow bbjj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}jj$	39
$bb \rightarrow bb$	37
$bb \rightarrow bb + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}$	30

Trigger: EF_2b35_loose_j145_j35_a4tchad

- L1: At least one J75 RoI
- L2: At least two 30 GeV jets, of which one must be at least 140 GeV. Additionally, at least two
 jets must satisfy a medium *b*-tag
- EF: At least two 35 GeV jets, of which one must be at least 145 GeV. Additionally, at least two
 jets must satisfy a medium b-tag

	M _H (GeV):	250	280	310	350	400	450	
L1 trigger L2 trigger j35 trigger		1 0.034 0.03	1 0.077 0.067	1 0.15 0.13	1 0.25 0.21	1 0.34 0.29	1 (M 0.4 0.34	IC bug)
	M _H (GeV):	500	550	600	650	700	800	:
 L1 trigger L2 trigger j35 trigger	r	1 0.45 0.38	1 0.48 0.41	1 0.49 0.42	1 0.51 0.43	1 0.51 0.44	1 (M 0.51 0.44	- IC bug)
J 60								

Signal Trigger Efficiency, no offline selection

- p_T cuts of 155 and 55 GeV on leading and sub-leading jets, respectively.
- Two jets passing online (L2 and EF in trigger) and offline (MV1) b-tags
- Leading 2 jets must pass tight MV1 b-tag
 - p_T cut of 25 GeV on third jet.
 - Third jet passing offline *b*-tag (Tight 60% for signal; loose or anti-tag for bkgnd)

Event Selection:

Mass Resolution and Rotated bb Mass Variable M_{bb} '

8

n_{jets} Categories

Every event has 2 *b*-jets

[signal MC, 800 GeV]

b-tag Categories

- bbb: third jet *b*-tagged at 60% working point [signal region]
- bbloose: third jet b-tagged at 80%
 WP, but NOT 60%
- bbanti: veto on third *b*-tagged jet
 [background control region]

fit strategy assumes same shape for all *b*-tag regions in background

binned likelihood function:

$$\mathsf{Pois}(N|\mu S + B) \prod_{l=1}^{N_{cat}} \prod_{i=1}^{N_l} \left[\mu N_{S,l} \mathsf{PDF}_{sig,l}(m_{bb,i}) + N_{B,l} \mathsf{PDF}_{bkg}(m_{bb,i}) \right]$$

800 GeV, bbb 3jets

- signal PDF is parameterized histogram, fit to MC
- normalization allowed to float in final fit

background, 3jets

- background shape and normalization taken from data
- assumption: shape(bbb) = shape(bbloose) = shape(bbanti) *

*except
$$PDF_{bbb}^{n \ jets} = (\alpha m'_{bb})PDF_{bbanti}^{n \ jets}$$

 $PDF_{bbloose}^{n \ jets} = (\beta m'_{bb})PDF_{bbanti}^{n \ jets}$

• α , β fit (separately in each n_{jets} bin) during fit to data

10

(2)

 $M_A = 600$ GeV bbb category

-1.5

m_{bb} (GeV)

11

Run 1 Analysis

bbø(bb) 95% CL Limit

Run 2 MC Signal Generation

 $gg \rightarrow b\overline{b}A$, $A \rightarrow \tau^+\tau^-$ was generated with 4FS MG5_aMC@NLO+PYTHIA8 (but with 5FS pdf NNPDF23LO) & 0 total Higgs width $\approx 40\%$ of the events are negative.

In order to avoid negative weights and to include a nonzero total Higgs width we have explored using Sherpa 2.2 to produce $bg \rightarrow bA + 0/1$ jet, & $gg \rightarrow b\overline{b}A$, $A \rightarrow b\overline{b}$

We have compared 4FS/ 5FS production with Sherpa 2.2 and CT104F/CT10 pdf , and found little difference in b jet and Higgs pT distributions .

We choose the 5FS Sherpa 2.2 production of $bg \rightarrow bA + 0/1$ jet, & $gg \rightarrow b\overline{b}A$, $A \rightarrow b\overline{b}$ with the 5FS pdf NNPDF30NNLO

For Run 2 MC production choose A^0 total width based on the following MSSM model: $\tan \beta = 20$ $\mu = -800$ GeV $M_{SUSY} = 1000$ GeV $A_t = 2000$ GeV $M_2 = 800$ GeV $M_3 = 1600$ GeV

DSID	M_{A^0}	$\Gamma_{A^0}(total)$	$\Gamma_{A^0}(total)$	$BR(A^0 \rightarrow b\overline{b})$	$BR(A^0 \rightarrow \tau^+ \tau^-)$	$BR(A^{0} \to t \overline{t})$	$\sigma(b\overline{b}h)^*$	$\sigma(b\overline{b}A^0)$
	(GeV)	(GeV)	Run 1 (GeV)				(<i>fb</i>)	(<i>fb</i>)
344046	200	2.4		0.94	0.06	0.00	3228.8	77912.1
344047	250	2.9	1.7	0.94	0.06	0.00	1601.4	34296.8
344048	300	3.3	2.5	0.93	0.07	0.00	1117.3	16786.1
344049	350	3.8	3.2	0.93	0.07	0.00	902.3	8771.1
344050	400	4.2	3.9	0.92	0.07	0.01	786.1	4811.6
344051	450	4.7	4.7	0.91	0.07	0.02	715.4	2791.6
344052	500	5.1	5.6	0.91	0.07	0.02	668.8	1693.6
344053	550	5.5	6.8	0.91	0.07	0.02	636.3	1066.4
344054	600	5.9	8.1	0.91	0.07	0.02	612.6	693.0
344055	650	6.3	9.3	0.91	0.07	0.02	594.8	462.9
344056	700	6.7	10.4	0.91	0.07	0.02	581.0	316.8
344057	750	7.1		0.90	0.07	0.02	570.1	221.5
344058	800	7.5	12.5	0.90	0.08	0.02	561.3	157.9
344059	850	7.9		0.90	0.08	0.02	554.2	114.6
344060	900	8.3		0.90	0.08	0.02	548.2	84.5
344061	1000	9.1		0.90	0.08	0.02	539.0	47.9
344062	1100	9.8		0.90	0.08	0.02	532.3	28.5
344063	1200	10.7		0.89	0.08	0.02	527.2	17.7
344064	1300	11.6		0.87	0.08	0.02	523.3	11.5
344065	1400	12.5		0.86	0.08	0.02	520.2	7.6

 $^{*}\sigma_{_{SM}}(b\overline{b}h) = 500 \ fb$

 $BR(h \rightarrow b\bar{b})$ $BR_{SM}(h \rightarrow b\overline{b})$ $\frac{BR(h \to b\overline{b})}{BR_{SM}(h \to b\overline{b})}$ $\frac{BR(h \rightarrow ZZ)}{BR_{SM}(h \rightarrow ZZ)}$ Γ_{A^0} (total) $\sigma(b\overline{b}h)^*$ $\sigma(b\overline{b}A^0)$ DSID M_{Λ} $\frac{BR(h \rightarrow ZZ)}{BR_{SM}(h \rightarrow ZZ)}$ (GeV) (GeV) (fb) (fb)344046 200 2.4 1.54 0.24 3228.8 77912.1 6.42 Excluded at 95% CL by 344047 250 2.9 1.40 0.44 3.27 1601.4 34296.8 Atlas BR^{bb} / BR^{ZZ} 344048 300 3.3 1.30 0.58 2.24 1117.3 16786.1 344049 350 3.8 1.23 0.68 1.81 902.3 8771.1 344050 4.2 400 1.18 0.75 1.57 786.1 4811.6 344051 450 4.7 1.14 0.80 1.43 715.4 2791.6 ATLAS: ATLAS-CONF-2015-044 344052 1.12 500 5.1 0.84 1.33 668.8 1693.6 CMS: CMS-PAS-HIG-15-002 344053 550 5.5 1.10 1.28 636.3 1066.4 0.86 344054 600 5.9 1.08 0.89 1.21 612.6 693.0 344055 650 6.3 1.07 0.90 1.19 594.8 462.9 🗕 ATLAS CMS 344056 6.7 700 1.06 0.92 1.15 581.0 316.8 ►ATLAS+CMS 344057 750 7.1 1.06 0.93 1.14 570.1 221.5 -±1σ 344058 800 7.5 1.05 0.94 1.12 561.3 157.9 ± 2σ 344059 850 7.9 1.04 0.94 1.11 554.2 114.6 Th. uncert. 344060 900 8.3 1.04 0.95 1.09 548.2 84.5 344061 1000 9.1 1.03 0.96 1.07 539.0 47.9 BR^{bb}/BR^{ZZ} 344062 28.5 1100 9.8 1.03 0.97 1.06 532.3 344063 1200 10.7 1.02 0.97 1.05 527.2 17.7 2 -1 0 1 344064 1300 11.6 1.02 0.98 1.04 523.3 11.5 344065 12.5 1.02 0.98 1.04 520.2 7.6 1400

For Run 2 Monte Carlo Production choose A^0 total width based on the following MSSM model: $\tan \beta = 20$ $\mu = -800 \text{ GeV}$ $M_{SUSY} = 1000 \text{ GeV}$ $A_t = 2000 \text{ GeV}$ $M_2 = 800 \text{ GeV}$ $M_3 = 1600 \text{ GeV}$

 $^{*}\sigma_{\rm SM}(b\overline{b}h) = 500 \ fb^{-1}$

PLOT TRUTH HADRON LEVEL QUANTITIES

Produce TRUTH3 DAOD files for $M_{h} = 125$ **GeV and** $M_{A} = 250,500,700,1000,1400$ **GeV**

Require at least 3 b-tagged AntiKt4TruthJets with $|\eta| < 2.5$

Form the Higgs from the 1st and 2nd leading p_{τ} b-tagged AntiKt4TruthJet with $|\eta| < 2.5$

Define the leading tag b-jet to be the 3rd leading p_{τ} b-tagged AntiKt4TruthJet with $|\eta| < 2.5$

SHERPA 5FS $bg \rightarrow bA+0/1$ jet, $A \rightarrow b\overline{b}$ with 5FS pdf NNPDF30NNLO; total width from $\tan \beta = 20$, ... but use SM coupling of Higgs to $b\overline{b}$ 5000 events

SHERPA 5FS $bg \rightarrow bA+0/1$ jet, $A \rightarrow b\overline{b}$ with 5FS pdf NNPDF30NNLO; total width from $\tan \beta = 20$, ... but use SM coupling of Higgs to $b\overline{b}$ 5000 events

SHERPA 5FS $bg \rightarrow bA + 0/1$ jet, $A \rightarrow b\overline{b}$ with 5FS pdf NNPDF30NNLO; total width from $\tan \beta = 20$, ... but use SM coupling of Higgs to $b\overline{b}$

SHERPA 5FS $bg \rightarrow bA+0/1$ jet, $A \rightarrow b\overline{b}$ with 5FS pdf NNPDF30NNLO; total width from $\tan \beta = 20$, ... but use SM coupling of Higgs to $b\overline{b}$ 5000 events

SHERPA 5FS $bg \rightarrow bA + 0/1$ jet, $A \rightarrow b\overline{b}$ with 5FS pdf NNPDF30NNLO; total width from $\tan \beta = 20$, ... but use SM coupling of Higgs to $b\overline{b}$ 5000 events

SHERPA 5FS $bg \rightarrow bA + 0/1$ jet, $A \rightarrow b\overline{b}$ with 5FS pdf NNPDF30NNLO; total width from $\tan \beta = 20$, ... but use SM coupling of Higgs to $b\overline{b}$ 5000 events

Run 2 b-jet trigger efficiency for bHbb (no offline event selection)

b-jets have very low pT when M_H is low

Analysis Goals in the Short Term (Higgs Couplings 2016, SLAC, Nov 9-12)

- Present $M_H > 400$ GeV results for 2015 and 2016 data.
- Current plan is to use the Run1 analysis for Run2 data
- If time permits include two differences w.r.t. the Run1 analysis:
 - Use MVA in place of the rotated Mbb' variable
 - Introduce a new 4 b-jet category.

Longer Term Goals

- Improve trigger efficiency for $M_H < 400 \text{ GeV}$
 - Investigate possibility of a low Pt threshold 3 b-jet or 4 b-jet HLT
 - Investigate L1 topological trigger
- For Moriond 2017 present $M_H > 400$ GeV results for Run 1 + Run 2
- Once low mass trigger problem is solved perform dedicated low Higgs Mass search (M_H < 400 GeV)