Simplified Limits on Resonances at the LHC

Elizabeth H. Simmons Michigan State University April 7, 2017

with R.S. Chivukula, P. Ittisamai, and K.A. Mohan *Phys. Rev. 94 (2016) 094029* and work in preparation

The Usual Suspects: Dijet Resonances

How to represent a broader class of models?

s-channel Resonance

Simplified s-channel Model

i.i	=	u,d,g	.ν.	W,	Z
- 7 J		J., J., J	י זי	,	

$$\mathbf{x},\mathbf{y} = j,t,b,g,\gamma,W,Z,h$$

Resonance Characteristics	Corresponding Observables
couplings	BR, σ * BR
mass, width	dσ/dm _{ab}
spin	dσ/dcos θ ab
X,y (each channel)	flavor tagging; jet substructure
i,j	event properties

NB: If x,y can be light quarks, t-channel process may be relevant

Narrow Width Approximation

$$\sigma_R(pp \to x + y) = \int_{s_{min}}^{s_{max}} d\hat{s} \,\hat{\sigma}(\hat{s}) \cdot \left[\frac{dL^{ij}}{d\hat{s}} \right]$$

$$\hat{\sigma}_{ij\to R\to xy}(\hat{s}) = 16\pi (1+\delta_{ij}) \cdot \mathcal{N} \cdot \frac{\Gamma(R\to i+j) \cdot \Gamma(R\to x+y)}{(\hat{s}-m_R^2)^2 + m_R^2 \Gamma_R^2} , \quad \mathcal{N} = \frac{N_{S_R}}{N_{S_i} N_{S_j}} \cdot \frac{C_R}{C_i C_j}$$

$$\frac{1}{(\hat{s} - m_R^2)^2 + m_R^2 \Gamma_R^2} \approx \frac{\pi}{m_R \Gamma_R} \delta(\hat{s} - m_R^2)$$

$$\sigma_R(pp \to x + y) = 16\pi^2 \cdot \mathcal{N} \cdot \frac{\Gamma_R}{m_R} \cdot (1 + \delta_{ij}) BR(R \to ij) \cdot BR(R \to xy) \left[\frac{1}{s} \frac{dL^{ij}}{d\tau} \right]_{\tau = \frac{m_R^2}{s}}$$

(Note: Can be corrected for K-factor(s) & Acceptance)

Branching Ratios

$$\sigma_R(pp \to x + y) = 16\pi^2 \cdot \mathcal{N} \cdot \frac{\Gamma_R}{m_R} \cdot (1 + \delta_{ij}) BR(R \to ij) \cdot BR(R \to xy) \left[\frac{1}{s} \frac{dL^{ij}}{d\tau} \right]_{\tau = \frac{m_R^2}{s}}$$

Simplest case: one relevant incoming / outgoing state

$$BR(R \to i + j)(1 + \delta_{ij}) \cdot BR(R \to x + y) = \frac{\sigma_R^{xy}}{16\pi^2 \mathcal{N} \frac{\Gamma_R}{m_R} \left[\frac{1}{s} \frac{dL^{ij}}{d\tau}\right]_{\tau = \frac{m_R^2}{s}}}$$

$$\leq 1/4 \quad (ij \to R \to xy)$$

$$\leq 1 \quad (ij \to R \to ij)$$

$$\leq 1/2 \quad (ii \to R \to xy)$$

$$\leq 2 \quad (ii \to R \to ii)$$

Upper bound on product of BR shows which classes of models are viable.

Better Variable: ζ

$$\sigma_R(pp \to x + y) = 16\pi^2 \cdot \mathcal{N} \cdot \frac{\Gamma_R}{m_R} \cdot (1 + \delta_{ij}) BR(R \to ij) \cdot BR(R \to xy) \left[\frac{1}{s} \frac{dL^{ij}}{d\tau} \right]_{\tau = \frac{m_R^2}{s}}$$

Simplest case: one relevant incoming / outgoing state

$$\zeta \equiv (1 + \delta_{ij})BR(R \to i + j) \cdot BR(R \to x + y) \cdot \frac{\Gamma_R}{m_R}$$

$$= \frac{\sigma_R^{XY}}{16\pi^2 \cdot \mathcal{N} \times \left[\left[\frac{1}{s} \frac{dL^{ij}}{d\tau} \right]_{\tau = \frac{m_R^2}{s}} \right]}$$

- Collapses different widths onto a single curve
- For upper bound, use $\Gamma/M \sim 0.1$

Memory Lane: DiBoson Excess

Spin-1 triplets (V^\pm,V^0)																	
Prod.	WW	ZZ	WZ	Wh	Zh	γh	$W\gamma$	$Z\gamma$	γγ	gg	hh	\overline{Q}_3Q_3	$\overline{q}q$	ll	$\ell^{\pm}\nu$	X	Ref.
DY	✓		✓									(√)	(√)	(√)	(√)		[39, 140–142]
DY	✓		✓	✓	✓							\sqrt{qq}	√	(√)	(√)		[40, 42, 43, 111]
DY	✓		✓	✓	✓							(✓)	(√)	(√)	(√)		[44]
DY	✓		✓	✓	✓							\sqrt{qq}	✓	(√)	(√)	(√)	[112]
DY	✓		✓	\checkmark_{WZ}	\checkmark_{WW}							\sqrt{qq}	√	(√)	(√)		[45, 46, 85, 91]
DY	✓		✓	\checkmark_{WZ}	\checkmark_{WW}							✓	✓	(√)	(√)		[41]
Spin-1 V^0																	
Prod.	WW	ZZ	WZ	Wh	Zh	γh	$W\gamma$	$Z\gamma$	$\gamma\gamma$	gg	hh	\overline{Q}_3Q_3	$\overline{q}q$	ll	$\ell^{\pm}\nu$	X	Ref.
DY	✓				\checkmark_{WW}							\sqrt{qq}	✓				[84]
DY	✓				\checkmark_{WW}							\sqrt{qq}	√	✓			[117]
DY	✓	✓						✓					✓				[118]
									Spin	-1 V	r±						
Prod.	WW	ZZ	WZ	Wh	Zh	γh	$W\gamma$	$Z\gamma$	$\gamma\gamma$	gg	hh	\overline{Q}_3Q_3	$\overline{q}q$	ll	$\ell^{\pm}\nu$	X	Ref.
DY			✓	\checkmark_{WZ}								\sqrt{qq}	√			✓	[86, 90, 92–94]
DY			✓	\checkmark_{WZ}								\sqrt{qq}	✓				[87, 88]
									Sc	alar							
Prod.	WW	ZZ	WZ	Wh	Zh	γh	$W\gamma$	$Z\gamma$	$\gamma\gamma$	gg	hh	\overline{Q}_3Q_3	$\overline{q}q$	ll	$\ell^{\pm}\nu$	X	Ref.
gg	✓	√						√	√	√							[75, 131, 143]
gg	✓	√						(√)	(√)	✓	$\sqrt{WW/2}$	(√)					[73]
gg	✓	$\sqrt{WW/2}$				✓			✓	✓	✓	✓				(√)	[141]
$q\bar{q}$	✓	$\sqrt{WW/2}$		(√)	(√)						✓		✓			✓	[123–125]
'Unconventional'																	
Torsion-free Einstein-Cartan theory											[144]						
Tri-boson interpretation: $pp \to R \to VY \to VV'X$										[136]							
[Implications in other observables (direct and indirect)]										[95, 97, 142, 145–148]							
					[Nex		leading			ction	s]		-	-	-	-	[148]
[Analysis techniques]									[102, 106, 149, 150]								

Les Houches Pre-Proceeding 2015

The Diboson Excess:
Experimental Situation and and Classification of Experiments
arXiv:1512.04537

DiBoson Vector Resonances

ATLAS 95% c.l. upper bounds from 20.3 fb⁻¹ at 8 TeV *JHEP* **12**, 055 (2015)

Multiple Production and Decay Modes

Lasy to evaluate for any model class or model

$$\zeta \equiv \left[\sum_{i'j'} (1 + \delta_{i'j'}) BR(R \to i' + j') \right] \cdot \left(\sum_{xy \in XY} BR(R \to x + y) \right) \cdot \frac{\Gamma_R}{m_R}$$

$$= \frac{\sigma_R^{XY}}{16\pi^2 \cdot \mathcal{N} \times \left[\sum_{ij} \omega_{ij} \left[\frac{1}{s} \frac{dL^{ij}}{d\tau}\right]_{\tau = \frac{m_R^2}{s}}\right]}$$

Reporting experimental
Imits in this format
simplifies comparison
with theory

weighting factor

$$\omega_{ij} \equiv \frac{(1 + \delta_{ij})BR(R \to i + j)}{\sum_{i'j'} (1 + \delta_{i'j'})BR(R \to i' + j')}$$

Vector Resonance in Dilepton Channel

ATLAS 95% c.l. upper bounds from 3.2 fb⁻¹ at 13 TeV *ATLAS-CONF-2015-070*

Leptophobic Vector Resonance in Dijets

Simplified Limits

on s-channel resonances, framed as bounds on

 $\zeta = BR_i BR_f \Gamma/M$

highlight relevant production channels for a newly observed narrow resonance.

Limits on finite-width resonances

Breit-Wigner Approximation

$$\sigma_R(pp \to x + y) = \int_{s_{min}}^{s_{max}} d\hat{s} \,\hat{\sigma}(\hat{s}) \cdot \left[\frac{dL^{ij}}{d\hat{s}} \right]$$

$$\mathcal{N} = \frac{N_{S_R}}{N_{S_i} N_{S_j}} \cdot \frac{C_R}{C_i C_j}$$

$$\hat{\sigma}(\hat{s})_{ij\to R\to xy} \equiv \frac{\Gamma_R^2}{m_R^2} \cdot \frac{\hat{s}}{m_R^4} \cdot \frac{16\pi\mathcal{N}(1+\delta_{ij})BR(R\to i+j)\cdot BR(R\to x+y)}{\left(\frac{\hat{s}}{m_R^2}-1\right)^2 + \frac{\Gamma_R^2}{m_R^2}}$$

(includes main impact of s-dependent widths)

Color-octet scalar in dijets

Vector resonance in dileptons

from 13.3 fb-1 at 13 TeV ATLAS-CONF-2016-045

Simplified Limits

readily extend to finite-width resonances.

The corresponding bound from the narrow-width approximation is generally a conservative estimate of the strength of the limit.

Benefits of Simplified Limits approach

- focus on model classes ⇔ production mechanisms
- easily identify
 - exclusion limits on BSM resonances
 - whether data constrains a given channel
 - classes of models relevant for a given excess
 - [specific theories consistent with an excess]
- ζ derives directly from model parameters
- works for narrow or finite-width resonances

If collaborations report results in terms of ζ , as well as σ^*BR , it will speed and deepen our understanding of new findings.

Low-energy tail of broad peaks

