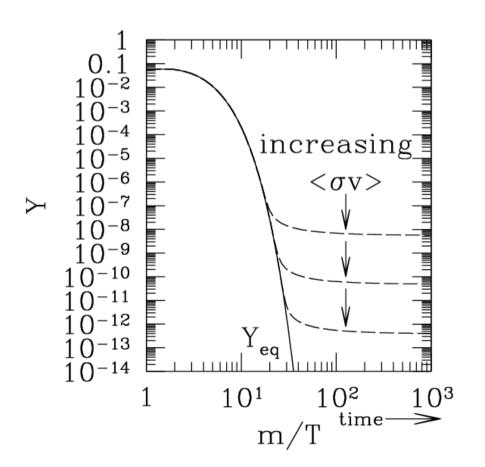
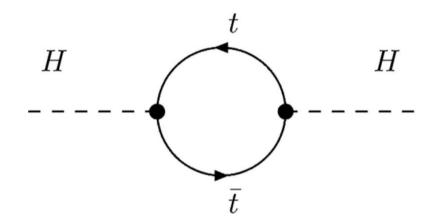

Electroweak Searches using Photon Final State Radiation

Ahmed Ismail

University of Pittsburgh

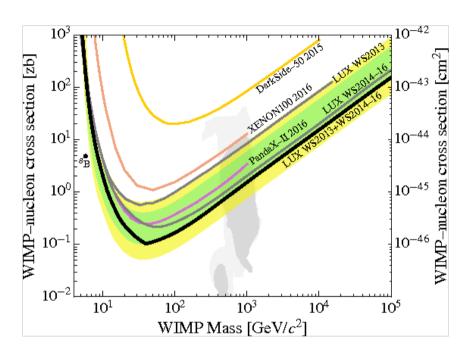
New Physics Interpretations at the LHC 2, Argonne


April 7, 2017

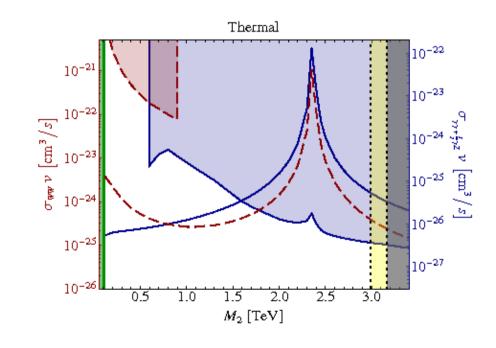


1605.00658, with E. Izaguirre and B. Shuve

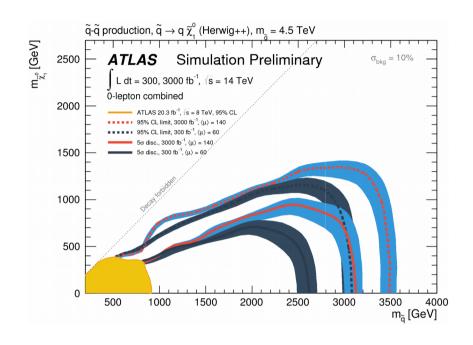
Why look for new electroweak states?


Naturalness, e.g. higgsino mass affects fine-tuning at tree level

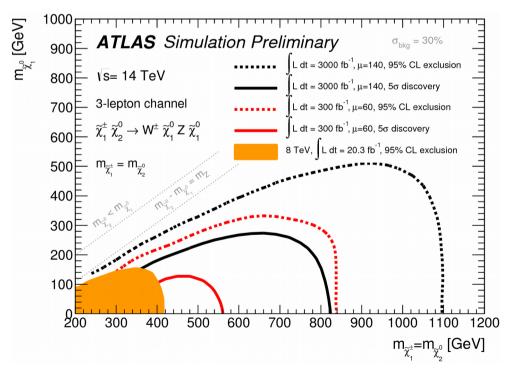
WIMP paradigm: a weakly interacting particle near the EW scale approximately reproduces the correct relic density


WIMPs

LUX, 1608.07648


Indirect detection constraints, e.g. SU(2) triplet fermions produce too many γ rays

Direct detection already excludes the simplest WIMP, a pure Dirac fermion in an SU(2) doublet


Cohen et al., 1307.4082

Collider searches

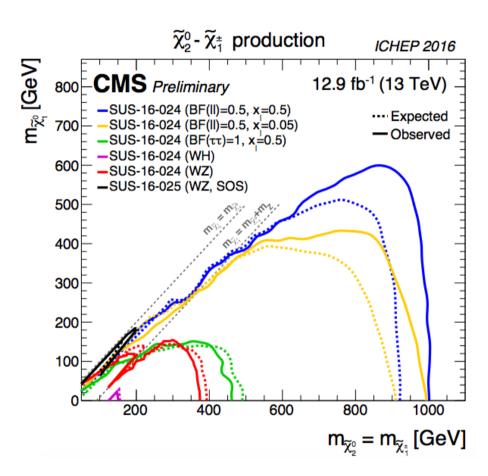
With increased luminosity, systematic rather than statistical uncertainties are limiting factor

Relatively speaking, searches for uncolored new particles will improve more

New electroweak states and MET

Focus on missing momentum signatures of new EW states

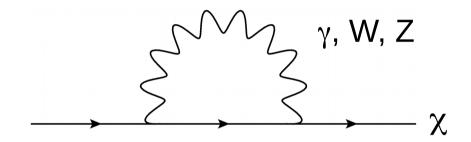
Assumptions:


EW multiplet odd under Z_2 symmetry, to avoid decays into SM particles that are covered by other searches

Q = 0 member of multiplet is lightest state, and hence invisible at colliders

New electroweak states and MET

Any non-trivial $SU(2)_L$ multiplet χ contains at least one charged particle


One strategy: produce charged particle and look for decay products plus MET

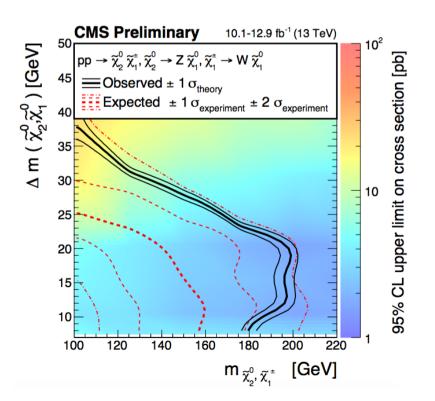
If charged/neutral splitting is large enough, leptons from χ^+ decay are visible

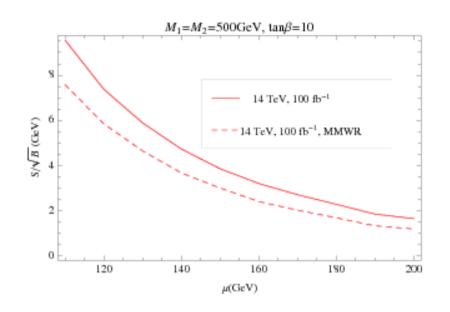
Mass splitting

Small mass difference from radiative corrections

$$M(\chi^{+}) - M(\chi^{0}) = \left(1 + \frac{2Y}{c_{w}}\right) \frac{\alpha_{2}}{2} M_{W} (1 - c_{w})$$

 $\approx 166 + 189(2Y) \text{ MeV}$


Extra splitting possible from EWSB (scalar: dimension 4)

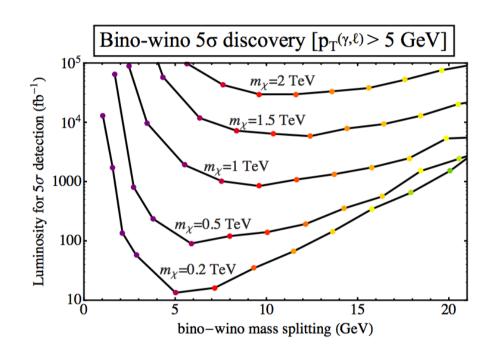

$$\mathcal{L} \supset \frac{i}{\Lambda} \left(\bar{\chi} \vec{\sigma} \chi \right) \left(H^{\dagger} \vec{\sigma} H \right) \to M(\chi^{+}) - M(\chi^{0}) \sim \frac{v^{4}}{\Lambda^{2} m_{\chi}}$$

Signatures: large splitting

For > ~several GeV mass splittings, can still use leptons from $\chi^+ \rightarrow \chi^0 + W^*$

Schwaller and Zurita, 1312.7350; Han et al., 1401.1235; Low and Wang, 1404.0682

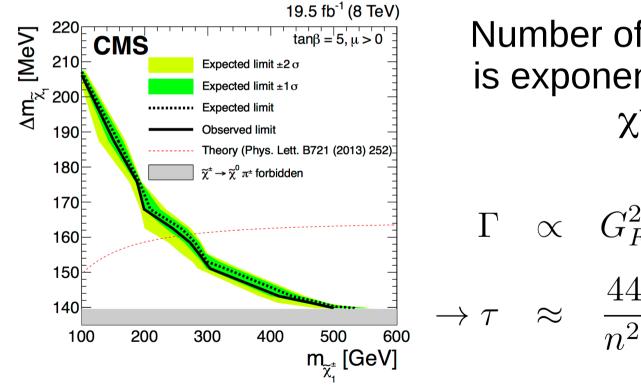
Multiple states also give leptons from off-shell Z


Standard example: gaugino sector of MSSM

Signatures: large splitting

Even lower splittings can again be probed if there are mixings among multiple states

e.g. using photons from neutral → neutral radiative decays


Bramante et al., 1412.4789

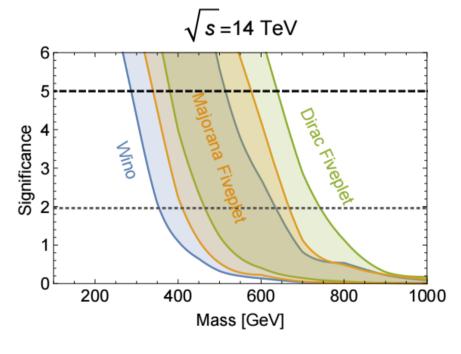
With enough energy and luminosity, can get sensitivity to electroweak states that are degenerate down to several GeV

Signatures: small splitting

For mass difference below 200 MeV, $\chi^+ \to \chi^0 + \pi^+$ gives disappearing tracks

Number of observed events is exponentially sensitive to χ^+ lifetime

$$\Gamma \propto G_F^2 \Delta M^3 f_\pi^2 \sqrt{1 - \frac{m_\pi^2}{\Delta M^2}}$$
 $\Rightarrow au \approx \frac{44 \text{ cm}}{n^2 - 1}$ Y = 0 *n*-plet


Signatures: small splitting

Radiative splitting for Y = 0 multiplets is ~166 MeV, so disappearing track searches often apply

If χ is Majorana fermion, simplest additional splitting is provided by dimension 7 operator

→ relatively robust limit

Dirac case: dimension 5 operator allowed

Ostdiek, 1506.03445

Intermediate splittings?

For mass differences between \sim 0.2-5 GeV, leptons from χ^+ decay are too soft to see in detector

But decay is prompt enough to avoid disappearing tracks!

→ alternative: go back to mono-X searches canonical example: Higgsinos (doublets)

8 TeV monojet limits

 $ATLAS: m_{\chi} > 103 \, GeV \, (SR4)$

 $CMS: m_{\chi} > 73 \, \text{GeV} \, (SR5),$

Han et al., 1401.1235

Current limits comparable to LEP

Need to go beyond monojets

Future monojet sensitivity hindered by large V + jet backgrounds

Baer, Mustafayev, Tata 1401.1162; Low and Wang, 1404.0682; Anandakrishnan, Carpenter, Raby 1407.1833; ...

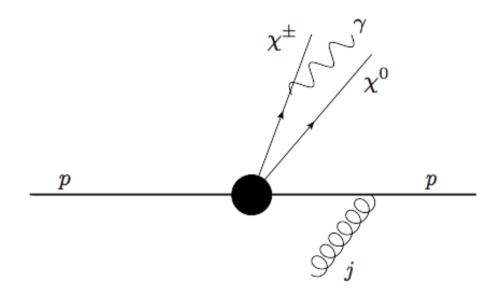
Table 1: Summary of the statistical and systematic contributions to the total uncertainty on the $Z(\nu\nu)$ background.

$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV) $ ightarrow$	>250	>300	>350	>400	>450	>500	>550
(1) $Z(\mu\mu)$ +jets statistical unc.	1.7	2.7	4.0	5.6	7.8	11	16
(2) Background	1.4	1.7	2.1	2.4	2.7	3.2	3.9
(3) Acceptance	2.0	2.1	2.1	2.2	2.3	2.6	2.8
(4) Selection efficiency	2.1	2.2	2.2	2.4	2.7	3.1	3.7
(5) R _{BF}	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Total uncertainty (%)	5.1	5.6	6.6	7.9	9.9	13	18

CMS, 1408.3583

Eventual systematic uncertainty limited by control region statistics

Photon final-state radiation

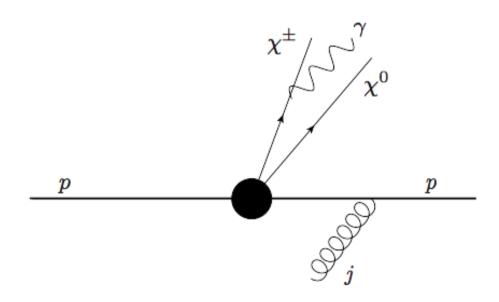

Even if χ^+ decays promptly and invisibly, it can still produce electroweak radiation

For massless photon emission, have: soft divergence – cut off by photon detection threshold collinear divergence – cut off by χ mass

W, Z radiation not as useful for most of the masses considered here, though can be relevant at very high energies

Photon final-state radiation

Take advantage of photon radiation by boosting In monojet events with $p_{\tau}(j) > m_{\chi}$, jet recoils against missing energy + any radiation

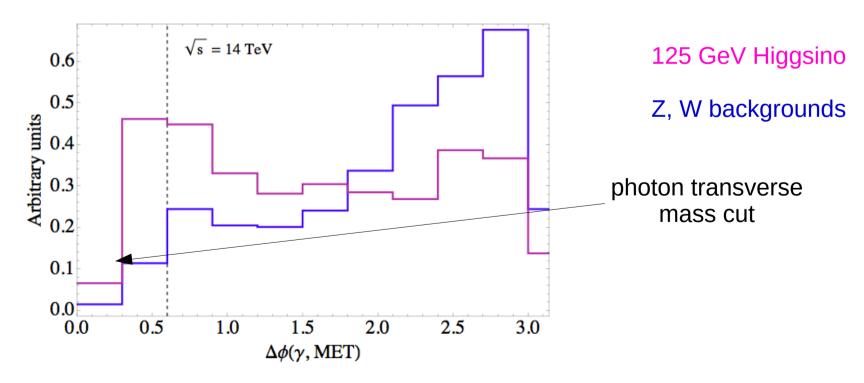

Pay statistical price of α for radiation, but benefit from low backgrounds and extra kinematic handle in γ + j + MET

Photon + jet + MET search

Trigger on hard jet and missing energy, then look for soft photon (15 GeV) with small angular separation from MET

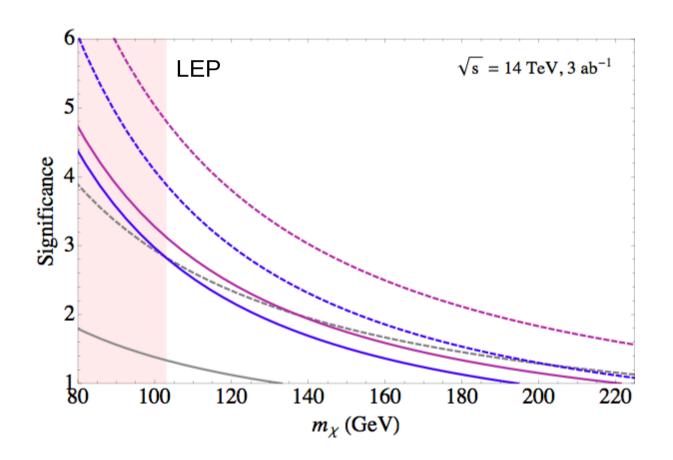
Backgrounds: $Z + \gamma + j$, $W + \gamma + j$, tops, QCD fakes

Require photon $m_T > m_W$, $p_T(j_1) / MET > 0.5$



Photon + jet + MET search

Trigger on hard jet and missing energy, then look for soft photon (15 GeV) with small angular separation from MET


Backgrounds: $Z + \gamma + j$, $W + \gamma + j$, tops, QCD fakes

Optimize further cuts on jet p_T , MET, $\eta(\gamma)$

Results - Higgsino

Adding photon to monojet final state helps, except in the case of low statistics (high mass) with significantly improved systematic uncertainties

Photon + jet + MET

Monojet

Combination

Solid: 5% systematics Dashed: 2% systematics

Summary

Charged states in an SU(2)_L multiplet may decay invisibly, but still leave photon final state radiation

Can look for photon in events with a hard ISR jet and missing energy, using kinematics to discriminate against backgrounds

Photon + jet can provide equal or better sensitivity than monojets to new electroweak states, depending on systematics that will be achievable

Experimental considerations

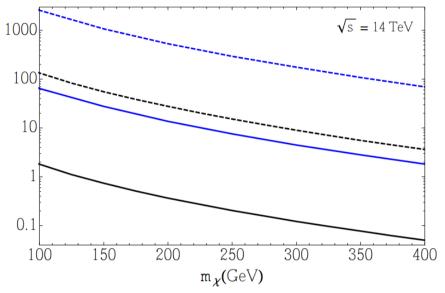
Recoil against hard jet provides alignment but also trigger, enabling acceptance of softer photons

Can estimate main backgrounds from data as for monojet search, e.g. $Z + \gamma + j$ from (hard) $\gamma + (soft) \gamma + j$, and $W + \gamma + j$ from control region with isolated hard leptons \rightarrow expect similar control of systematics

Cuts on extra jets, leading jet p_T / MET ratio reduce backgrounds from tops, QCD

Results - Higgsino

 $Y = \frac{1}{2}$ doublet (Higgsino):

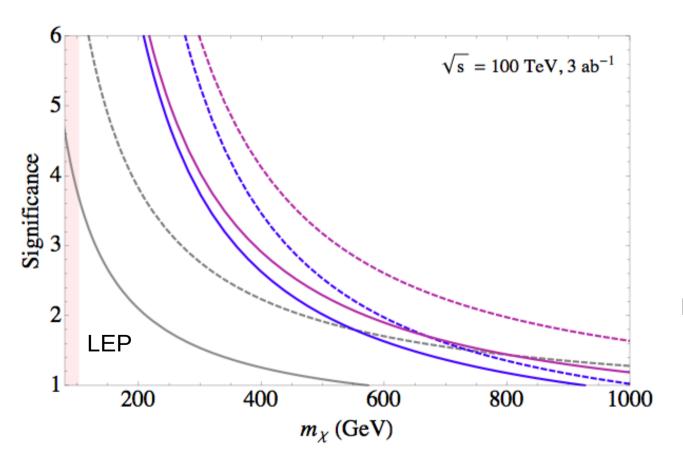

- light in natural SUSY

- thermal dark matter at 1.0 TeV

- radiative splitting between charged and neutral state is 340 MeV

- direct detection through Z exchange In pure Dirac limit, but *very* small splitting eliminates possibility

 indirect detection difficult, even with CTA


Doublet

Quintuplet

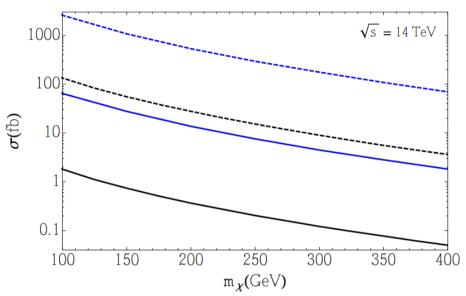
Solid: photon + jet + MET Dashed: jet + MET

Results - Higgsino

At 100 TeV, combining photon + jet with monojet channel can increase exclusion reach from ~ 450 to 750 GeV, with improved systematics

Photon + jet + MET

Monojet

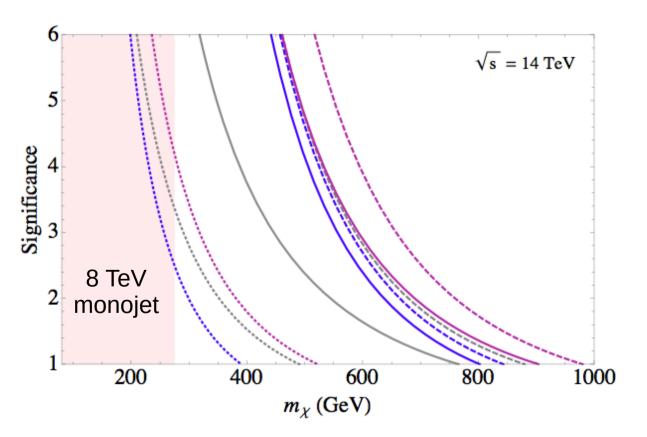

Combination

Solid: 5% systematics Dashed: 2% systematics

Results - Quintuplet

Y = 0 quintuplet:

- standard minimal DM candidate
- simplest EW multiplet that cannot decay to SM fields through dimension < 6 operators
- thermal dark matter at 4.4 TeV
- in Dirac case, modeldependent splitting can evade disappearing tracks
- no direct detection


Doublet

Quintuplet

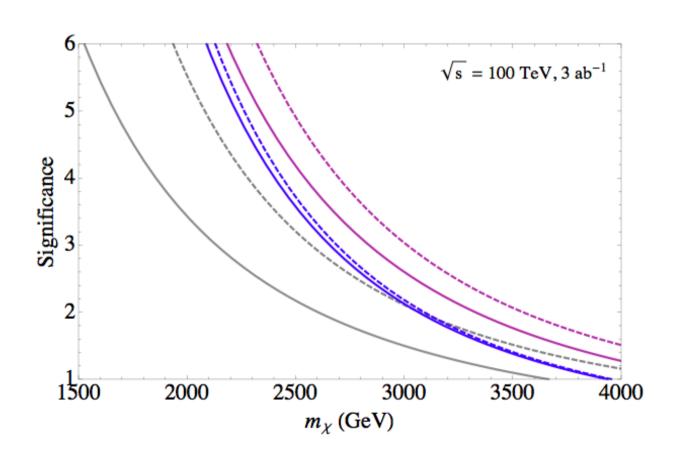
Solid: photon + jet + MET Dashed: jet + MET

Results - Quintuplet

With enough luminosity, increased radiation from χ^{++} improves photon + jet + MET analysis to be competitive

Photon + jet + MET

Monojet


Combination

Dotted: 20 fb⁻¹, 5% systematics Solid: 3 ab⁻¹, 5% systematics

Dashed: 3 ab⁻¹, 2% systematics

Results - Quintuplet

Thermal DM mass not quite reached at 100 TeV, but photon + jet channel still provides useful information

Photon + jet + MET

Monojet

Combination

Solid: 5% systematics Dashed: 2% systematics