Regression and BDTs in TMVA

By Andrew Carnes
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Wrote a Boosted Decision Tree (BDT) package, BDTLib
https://github.com/acarnes/bdt
* Multiple loss functions
« Consensus to integrate this functionality into TMVA
Would also like to parallelize the BDTs
Beginning to implement these additions
Status
 Began benchmarking
e QOutlining code structure
e Familiarizing further with TMVAs BDT implementation


https://github.com/acarnes/bdt

Benchmarking on CSC Pt Assignment 3

« Comparing some loss functions from BDTLib to TMVA's Huber Loss function in the
context of regression

* Here we look at momentum assignment in the L1 Trigger's Cathode Strip Chambers
using Monte Carlo

« We see an obvious difference in the predictions given different loss functions as
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Benchmarking on Toy Calorimeter

« Again comparing some loss functions from BDTLib to TMVA's Huber Loss function in
the context of regression
» Here we look at predicting the energy deposition in a toy calorimeter
» Uses the sample from the page below
 https://www.hep1.physik.uni-bonn.de/people/homepages/tmva/tmvatutorial
« Again we see a difference in predictions
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BDT_Energy - True_Energy (GeV)



https://www.hep1.physik.uni-bonn.de/people/homepages/tmva/tmvatutorial
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 Benchmarks now available for comparison with future improvements
* Beginning to implement multiple loss functions into TMVA
 Outlining code at the moment
* Figuring out how the new class structure will fit into TMVA
 There are also plans to parallelize the BDTs in TMVA
« Can search for the best cuts along each feature in parallel
« Can reduce the BDT training time by a factor of the number of
features
« Can also parallelize the evaluation since the contribution from each
tree doesn't depend on any of the others
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« BDT Algorithm Overview
» References



Brief BDT Algorithm Overview -’
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0 e » May be viewed as a series of
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, s , _ decisions (shown below)
Fig 1. A decision tree with 3 terminal nodes

Boosting x <0.514  else

« Make one tree, add another tree that )
corrects the predictions of the first

« Add another tree that corrects the net
prediction of the first and second y <0535 ] else

« Continue the process

* End up with a collection of trees (Forest)
and a net prediction

e FX)=T (X)+ T (X)+ T (X)+ ... + T (X)
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