

MIRKO POJER

How to deal with non-conformities

HARDWARE COMMISSIONING DAY

Acknowledgements: A. Ballarino, K.-H. Meβ, Y. Thurel, W. Venturini

- September 19 related NCs (relief valves, anchored/bypassed splices,...)
- I will only (or mainly) speak about electrical NCs
- Sector 3-4: I don't speak about it, since it will be completely re-qualified (better checked than the others...); but the impact on powering tests will be strong:
 - Short-circuit tests with 24h heat run
 - Full commissioning campaign
 - Cables integrity still to be verified.....
- Cryogenics NC's:
 - SAM, IT copper strips, thermometers, valves/clapets, Y-lines (not in 7-8 and 8-1), ...
- AUG discoveries and requested modifications
- Change of cables (pt.4 and 6) and additional cables in pt.3
- SEU being followed by the R2E working group (inspections/iterations on the different points ongoing)

- Where to find non-conformities
- Already requested changes
- List of non-conformities
- One question...
- Who opens NCs and who solves them
- 2 more NCs

hardware commissioning coordination

Non Conformity	MTF Entry	Туре	Importance	Disposition	"Real" status
Sector 1-2					
ON-ELOA-PAO-34L2-001	DE.RCD.A12B1	Electrical / Instrumentation	Critical	Decision Pending	Closed with warnings
ON-ELOA-PAO-19R1-001	DE.RCS.A12B2	Electrical / Instrumentation	Critical	Decision Pending	Closed with warnings
ON-ELOA-TP4E-IRC-RD1.L2-001	DE.RD1.L2	Electrical / Instrumentation	Critical	Decision Pending	Closed with warnings
Sector 2-3					
ON-ELOA-PAO-14R2-001	DE.RCS.A23B1	Electrical / Instrumentation	Critical	Repair	Closed with warnings
NCR IN020 Smoothing of TCSG.4L3.B2	TCSG.4L3.B2	Mechanical / Geometry	Critical	Decision Pending	Initiated
Sector 3-4					
ON-ELOA-AIV-ROTL7.R3.B1-001	DE.ROTL7.R3B1	Electrical / Instrumentation	Critical	Decision Pending	Following 3-4 incident
ON-ELOA-AIV-ROTL7.R3-B2-001	DE.RQTL7.R3B2	Electrical / Instrumentation	Critical	Decision Pending	Following 3-4 incident
Sector 4-5					
ON-ELOA-DOC-C-RCBV30.R4B2-002	DE.RCBV30.R4B2	Electrical / Instrumentation	Critical	Decision Pending	EIQA to be repeated before pow.
Sector 5-6					
ON-ELQA-MPAQ-26L6/12L6-001	DE.ROD.A56	Electrical / Instrumentation	Critical	Use-as-is	Closed with warnings
Sector 6-7					
Sector 7-8					
ON-ELOA-TP4B-HVO-RCO.A78B2-001	<u>DE.RCO.A78B2</u>	Electrical / Instrumentation	Critical	Decision Pending	Closed with warnings
NC-ELOA-ICC-Q4L8-YT313-001	<u>DE.RQ4.L8</u>	Electrical / Instrumentation	Critical	Decision Pending	Closed w 👯 a 1 i 137 🔘 -
PROBLEME D'ISOLATION ELECTRIQUE SUR		Electrical / Instrumentation	Critical	Decision Donding	Clased222
AU NIVEAU DE LA DEBMC	<u>DW.R05.Lo</u>		CITCAI	Decision Pending	Closed???
ON-ELQA-TP4E-ORC-MCBCHS5.L8B1-001	DE.RCBCHS5.L8B1	Electrical / Instrumentation	Non critical	Use-as-is	Corrector replaced by WM
Sector 8-1					
ON-ELOA-DOC-W-RCBV19.L1B1-001	DE.RCBV19.L1B1	Electrical / Instrumentation	Critical	Decision Pending	Should be closed!!!
ON-ELOA-TP4E-IRC-RCBXH2.L1-001	DE.RCBXH2.L1	Electrical / Instrumentation	Critical	Decision Pending	Closed with warnings
QN-ELQA-TP4E-ICC-RCO.A81B1-001	DE.RCO.A81B1	Electrical / Instrumentation	Critical	Decision Pending	CL resistance too high
QN-ELQA-TP4E-ICC-RCO.A81B2-001	DE.RCO.A81B2	Electrical / Instrumentation	Critical	Decision Pending	CL resistance too high
ON-ELOA-TP4E-ICC-RCOSX3.L1-001	DE.RCOSX3.L1	Electrical / Instrumentation	Critical	Decision Pending	R in circuit: to be followed in pow.
ON-ELQA-TP4E-HVQ-RD1.R8-001	DE.RD1.R8	Electrical / Instrumentation	Critical	Decision Pending	Closed with warnings
QN-ELQA-TP4A-ICC-RQX.L1-001	DE.ROX.L1	Electrical / Instrumentation	Critical	Decision Pending	Closed with warnings
ON-ELOA-TP4A-POL-ROX.L1-001	DE.ROX.L1	Electrical / Instrumentation	Critical	Decision Pending	Should be closed!!!
QN-ELQA-TP4E-IRC-RTQX2.L1-001	DE.ROX.L1	Electrical / Instrumentation	Critical	Decision Pending	Closed with warnings

The NC is attached to the magnet but not to the circuit!

MTF Application - Equipment Main Page (HCLBBRA000-IN002007) - Windows Internet Explorer

	-										
	No	Title	EDMS	HWC phase	Circuit	Application	Date	Current Status	MTF	Status EDMS	Description
٩Ŋ	1	QN-MPP-IST- RB.A12-C15R1-001	<u>947913</u>	Cold	RB.A12	IST	8-Aug-08	Initiated		Initiated	The IST test performed by the QPS team failed during the discharge of the quench heater YT111 of the magnet 2395 at C.15R1. The QH circuit has been found open below the cover flange, probably at the output of the capillary tube.
<u>y</u>	2	QN-MPP-IST- RB.A12-C32R1-001	<u>947915</u>	Cold	RB.A12	IST	8-Aug-08	Initiated		Initiated	The IST test performed by the QPS team failed during the discharge of the quench heater YT111 of the magnet 1372 at C.32R1. The QH circuit has been found open below the cover flange, probably at the output of the capillary tube.
	3	QN-MPP-IST- RB.A23-A21L3-001	<u>942550</u>	Cold	RB.A67	IST	10-Jul-08	To be opened		Initiated	During IST test, QPS team found abnormal shape during the discharge of quench heaters power supply on magnet A21L3 (MBAL3708). OH YT121 was found broken. Investigations performed by ELQA team confirm that the YT is open and that insulation vs GND and vs coil is fine. On 03/07/08 YT 121 was isolated inside IFS box (wires cut and isolated). On 10/07/08 further investigation (TDR) is done to localise the open circuit. The result of TDR shows that the YT121 is open just below cover flange and might be repaired once the magnet is warmed up. When disconnecting P10 connector on 10/07/08, the capacitor bank where still charged ! This led to a dangerous arc between P10 connector cable and P10 socket. Pins are damaged. Integrity of cable is fine. The connector P10 is changed. Insulation integrity is checked and is fine.
	4	QN-MPP-IST- RB.A45 C17R4 001	<u>961338</u>	Cold	RB.A45	IST	29-Aug- 08	Initiated		Closed	During IST test, QPS team found abnormal shape during the discharge of quench heaters power supply on magnet C17R4 (MBBL2214). OH YT211 resistance is high (14.50hm instead of 11.3) and current decay is fast at the beggining of the discharge. Investigations performed by ELOA team confirm that the YT211 resistance is high and YT211 - is shorted to GND (2.4 Ohm from P10). OH YT211 was isolated inside IFS box and being replaced for protection by two low field quench heaters. Following the standard procedure in case of broken or damaged quench heaters YT211 has been replaced by the two LF heaters YT212 and YT222 wired in parallel. The new configuration has been successfully tested. NC Closed
	5	QN-MPP-IST- RB.A67-A32L7-001	<u>938121</u>	Cold	RB.A67	IST	15-Jul-08	Initiated		Initiated	During IST test, QPS team found abnormal shape during the discharge of quench heaters power supply on magnet A32L7 (MBBR1263). OH YT211 was found broken (open circuit). Investigations performed by ELQA team confirm that the YT211 is open and that insulation vs GND and vs coil is fine. TDR diagnostic shows that the YT211 is open just below cover flange and might be repaired once the magnet is warmed up.
	6	QN-MPP-IST- RB.A78-B21L8-001	<u>925045</u>	Cold	RB.A78	IST	7-May-08	Can be closed		Initiated	During IST test, QPS team found abnormal shape during the discharge of quench heaters power supply on magnet B21L8 (MBBR2007).

It could be interesting/important to create an arborescence attached to the different circuits for (n)MPP or OP, where to put all NCs related to test or operation of the circuits ("Performance" folder)

"POINT OWNERS' NCs"

LHC Powering to Nominal test evolution		CIRCUIT NAME	LAST PASSED TEST	TESTS EXEC	LAST EXEC	suc t	JNDER EXEC				EXE	CUTION PI	LAN		
Show test evolution by sector:		RCO.A78B2	PIC2 TEST HW LINKS	9 / 12 (75%)	PCS	Ν	-	PCL P	CC.5 PIC	PCS 1	PNO.d3 PNO.a3	PIC2 GPM			
		RCO.A81B1	PCL	1 / 12 (8%)	PCC.5	Ν	-	PCL P	C.5 PIC	PCS 1	PNO.d3 PNO.a3	PIC2 GPM			
LHC sector: All Sectors 💌		RCO.A81B2	PCL	1/12(8%)	PCC.5	Ν	-	PCL P	C.5 PIC	PCS 1	PNO.d3 PNO.a3	GPM BIC2			
Select Circuit:		RQS.L2B1	PIC2 CRYO-OK	(25%)	PIC2 CRYO-OK	Y	-	PCL P	C.5 PIC	PCS I	PNO.d3 PNO.a3	GPM			
Circuit type: Any circuit type V Powering subsector: Ar	у 🕶	RQS.R2B2	MECH	(100%)	PROTEC. MECH	Y	-	PCL P	C.5 PIC	PCS 1	NO.d3 PNO.a3	GPM PIC2			
Interlock type: Any Interlock type Circuit Location: Any	×	RCBCHS5.L8B	24 HOUR HEAT RUN	0/9(0%) 8/9(88%)	- PNO el	- N	-	PCL P	C.1 PIC	PNO.a1	PNO.dl PNO.el	GPM PIC2			
OR display only circuits included in a SOC: Not defined by SOC	v	RCBYHS5.R8B	PNO.d1	8 / 9 (88%)	PNO.e1	N	-	PCL P	C.1 PIC	PNO.a1	PNO.dl PNO.el	GPM PIC2 GPM			
Report Type:		RD2.R8	PNO.c2	12/12	PNO.c2	Y	_	PCL P	C.3 PIC	PLI1.c2	PLI2.f2 PNO.c2	PIC2 GPM			
Detailed Test Plan		RQX.L2	PNO.d11	16 / 16	PNO.d11	Y		PCC.T1 PC	C.T2 PCC.	3 PIC2	PLI2.e5 PLI3.d8	PLI2.e6 PLI	3.d10 PLI3.f6 PNO.c	d8 PNO.f7 PNO.d11 PIC2	
Info to Display:	CIRCUIT	Re	22602							Las	t	Re	espon	Modified	
 ✓ Hide PIC1 tests ✓ Hide data columns (info ✓ Collapse PIC2 tests ☐ Hide exec. columns (info 	NAME		20011							Up	dated	sit	ole	by	
lssues: Circuits:	RCO.A78B	2 QP SPI	S NEEDS TO I LICE ISSUE	DO SOME	MORE AN	ALYS	IS - P(DSSIB	LE	03-S 09:1	EP-08 3:45	QP	s	A.VERGARA	
(Circuits Needing Attention) On Christian O All circuits O All issues O In Mission Of The Day	RCO.A81B	1 RES	SISTANCE SEE OM THE CL.	N BY TH	E PC. POSS	IBLY C	OMI	NG		17-J 11:3	JN-08 3:36	MP	P	C. FERNAND	z
Open issues C Exclude 100% Commi	RCO.A81B	2 RES	SISTANCE SEE OM THE CL.	N BY TH	E PC. POSS	IBLY C	OMI	NG		17-JI 11:3	JN-08 5:05	MP	P	C. FERNAND	z
	RQS.L2B1		HAS TO BE DE STALLED.	CIDED IF	A DC CON	TACT	OR IS	то в	E	18-J 10:1	JL-08 5:34	РО		M.P.CASAS L	INO
	RQS.R2B2		HAS TO BE DE STALLED.	CIDED IF	A DC CON	TACT	OR IS	то в	E	18-JI 10:0	JL-08 8:09	РО		M.P.CASAS L	INO
	RCBCHS5.L8	BB1 CIR	RCUIT REPLAC AGNET	ED BY TH	IE WARM (CORR	ЕСТО	R		08-N 17:3	1AY-08 3:20			A.VERGARA	
	RCBYH4.R8		CUIT BLOCKE	D BY MF	P TILL FUR	THER				09-S 11:1	EP-08 7:08	MP	РР , РО	A. VERGARA	
	RCBYHS5.R8	8 <mark>B1</mark> CIR		D BY MF	P					09-S 11:1	EP-08 6:29	MP	РР, РО	A.VERGARA	
	RD2.R8	DE A). CO	TRAINING QU DECISION OF	JENCH A MPP TC IE POWE	F 5847 A (F) BE TAKEN RING.	IRST (BEFC	ONE A DRE	AT 58!	54	28-A 11:4	UG-08 6:36	MP	PP	C. FERNANDE	Z
	RQX.L2	LE PR PO	CABLE 12051 OVISOIREME LYETHYLENE	4 RQX.L2 NT AVEC POUR EV	BFLX 3L2.3 DES FEUILI ITER UN CO	B B ES LES K/ DURT	T ISO APTO -CIRC	LE' N ET I UIT	DU	11-A 14:1	UG-08 7:34	AL/ JAC	AIN COB	M.P.CASAS L	INO

Table 1 Status of commissioning of all circuits in sector 1-2.

Circuit Type	Total number of circuits	Commissioned to 7 TeV	Commissioned only to 5 TeV	To be commissioned
RB, RQ	3	-	3	
IPQ, IPD	31	31	-	-
Triplet	2	-	1	1
600A	53	36	15	2
80-120A	50	42	8	-
60A	94	94	-	-
TOTAL	233	203	27	3

Table 1 Status of commissioning of all circuits in sector 2-3.

Circuit Type	Total number of circuits	Commissioned to 7 TeV	Commissioned only to 5 TeV	To be commissioned
RB, RQ	3	-	3	-
IPQ, IPD	16	16	-	-
Triplet	1	1	-	-
600A	56	32	20+2(<5TeV)	2*
80-120A	37	33	4	-
60A	94	94	-	
TOTAL	207	176	29	2

Table 1 Status of commissioning of all circuits in sector 4-5.

Circuit Type	Total number of circuits	Commissioned to 7 TeV	Commissioned only to 5 TeV	To be commissioned
RB, RQ	3	-	3	-
IPQ, IPD	16	14+2(<7TeV)		
Triplet	1	-	-	1
600A	47	28+1(<7TeV)	4	14
80-120A	35	30+1(<7TeV)	-	4
60A	94	94		-
TOTAL	196	170	7	19

Table 1 Status of commissioning of all circuits in sector 5-6.

Circuit Type	Total number of circuits	Commissioned to 7 TeV	Commissioned only to 5 TeV	To be commissioned
RB	1	-	1 (6.61 TeV)	-
RQ	2	2 (11280 A)	-	-
IPQ, IPD	12+1	12+1	-	-
Inner Triplet	1	-	1	-
600A	46	17	16 + 13 (<5TeV)	-
80-120A	33	29	3	1
60A	94	94	-	-
TOTAL	190	155	34	1

Table 1 Status of commissioning of all circuits in sector 6-7.

Circuit Type	Total number of circuits	Commissioned to 7 TeV	Commissioned only to 5 TeV	To be commissioned
RB	1	-	1	-
RQ	2		2	1.1
IPQ	5	5		242
600A	49	19	28+2 (<5TeV)	-
80-120A	20	20		-
60A	94	94	-	-
TOTAL	171	138	33	-

Table 1 Status of commissioning of all circuits in sector 7-8.

Circuit Type	Total number of circuits	Commissioned to 7 TeV	Commissioned only to 5 TeV	To be commissioned
RB, RQ	3	-	3	-
IPQ, IPD	9	9	-	-
Triplet	1	1		-
600A	56	30	24+1(<5TeV)	1
80-120A	37	32	a second second as	5
60A	94	94	-	-
TOTAL	200	166	28	6

Table 1 Status of commissioning of all circuits in sector 8-1.

Circuit Type	Total number of circuits	Commissioned to 7 TeV	Commissioned only to 5 TeV	To be commissioned
RB, RQ	3	-	3	-
IPQ, IPD	17	16+1(<7TeV)	-	120
Triplet	2	· · · ·	-	2
600A	53	51	-	2
80-120A	50	38		12
60A	94	94	-	-
TOTAL	219	200	3	16

(MARTIN	
100	

EDMS Document No. 938922 Engineering Change requested by (Name & Div./Grp.) :
Engineering Change requested by (Name & Div./Grp.) :
M.Zerlauth, D.Nisbet, T.Risselada
Date: 26-08-20
ge Order – Class I

parameters for various LHC circuits

ALREADY REQUESTED CHANGES

<u>ECR EDMS938922</u>

– RD3 and RD4:

CERN CH-121

Switzer

- Increase of nominal and ultimate current levels and max ramp rate:
 - RD3 →5860 (5520), 6340 (6000)
 - RD4 →6150 (5520), 6650 (6000)
 - Long run to verify cable performance with 20% additional heat load?
- RQX and RTQX2:
 - Problem if the pre-squeeze is done after the ramp
 - RQX in IR2 and IR8 >7180 (6450), 7180 (7000)
 - RQX in IR1 and IR5 →6800 (6450), 7180 (7000)
 - RTQX2 in IR2 and IR8 →4780 (4180), 4780 (4410)
 - RTQX2 in IR1 and IR5 \rightarrow 4600 (4180), 4780 (4410)
- 600 A circuits change in ramp rate:
 - RCO, from 1 to 3 A/s
 - RQ6.L/R3, RQ6.L/R7, from 1.361 to 3 A/s
 - RCBXH/V1, from 1.667 to 5 A/s
- RCBH/V change of ramp rate from 0.5 to 1 A/s

The D2 was quenching when the Q4-B1 was at high value

The Quench was likely in the part, where the power busses are in the DFBM "side-by-side"

Once the cable where shaken into place, no quench occurred any more

Table 2. Distribution of busbars in DFBMAs with NC

DFB	sector	IR Cable 1			Cable 2			
DFBMA.4L2	1-2	2L	D2A	D2B	Q4A	Q4B	Q4C	not used
DFBMA.4L8	7-8	8L	D2A	D2B	Q4A	Q4B	Q4C	not used

The fault is still in the LHC and may show up again, here and elsewhere.

Figure 2. Schematic view of 6kA busbar rou	DFB		Cable 1			Cable 2			Cable 3			Cable 4	
	DFBAO.L8	?	?	?	?	?	?	?	?	?	?	?	?
	DFBAA.L1	Q9C	Q9A	Q7B	Q10A	Q10B	Q10C	Q7A	Q7C	Q8B	Q8A	Q8B	Q9B
	DFBAP.R8	Q8A	Q8C	Q10C	Q9C	Q9B	Q8C	Q7A	Q7B	Q9A	Q10A	Q10B	Q7C
	DFBAH.R4	Q7C	Q10B	Q9B	Q9A	Q8B	Q9C	Q8A	Q7A	Q8C	Q7B	Q10A	Q10C
	DFBAI.L5	08A	O8B	Q10B	Q7A	07C	08C	O9B	09C	Q7B	Q10A	Q10C	09A
	DFBMA.4L2	D2A	D2B	Q4A	Q4B	Q4C							
	DFBMA.4L8	D2A	D2B	O4A	O4B	O4C							
	DFBLA.L1	D2A	D2B	Q6A	Q6B	Q6C		Q4A	Q4B	Q4C	Q5A	Q5B	Q5C
	DFBLB.R1	D2A	D2B	Q6A	Q6B	Q6C		Q4A	Q4B	Q4C	Q5A	Q5B	Q5C
	DFBLD.R5	D2A	D2B	Q6A	Q6B	Q6C		O4A	O4B	O4C	05A	Q5B	O5C

- RCO.A78B2:
 - 77 correctors with more than 800 welded splices
- RQT13.L5B1:
 - It was decided to reduce the operating current: dangerous to use it?
- Similar for RQTF.A45B2

Is there a bad splice hidden somewhere? Is reducing the nominal current enough?

Circuit	Current	Delay	Comment
RQT13	549.9 A		Quench
L5B1	550 A	28 s	Quench
	550 A	90 s	Trip, unknown
RQTF	525 A		Quench
A45B2	362 A		Quench
	454 A		Quench
	550 A	32 s	Quench
	550 A	2 s	Quench
	550 A	24 s	Quench
	550 A	26 s	EE Dump

Do non-conformities exist for these circuits? Are there documented recommendations? Are we going to follow this up in this SD?

The "Performance" repository is the right place...

THE TRANSIENT SPIKE PROBLEM

- "Quench" in MB B30.R7 during fast discharge at 7000A dI/dt =-70A/s
- There is no real quench. There is a voltage difference between the two apertures which grows with dI/dt and exceeds 100mV.

This could become an issue for the n-QPS...

POWER CONVERTERS: LHC 600A-10V

dl/dt

V.boost

I,V1

Vo

0

To deduce the resistive component of the magnet load, the di/dt must be calculated by QPS. The use of a derivative in the calculation requires for a long integration time, which is incompatible with reference jumps. Thus the calculation is only accurate for low di/dt and d^2i/dt^2 .

The power converters generate some distortion when crossing through zero voltage with current in the load. This is very specific from the 4-quadrant power converter, with the result of a voltage spike, not filterable at the converter level (OV-crossing distortion)

Rcable

✓ PO made several measurements to characterize the zero-voltage-crossing distortion

✓ the QPS team has worked with PO to develop a filter to reduce the effect of the distortion on the voltage measurement

➡ the solution also improved QPS robustness to di/dt and d²i/dt² parameters

Power

Module

Documents concerned :

LHC Layout Database

LHC Integration Documents Cablotheque

Equipment concerned :

LHC power converters of

RPMBB type

Drawings concerned :

600 A-10 V CROWBAR ISSUE

A 600 A power module, when off, STILL drives a current in the range [-20A..20A], due to its 4-guadrant stage being STILL

The A-Type rack is not affected by this behavior of the power module, since A-Type means a DC contactor is placed in series between the power module and the circuit.

For the B-Type, the crowbar activation relies on a 13 V threshold. For a low current (45 A during PCC test), the current generated by the 4-Q stage, when switching off the converter, reduces the voltage developed.

The PCC current was changed to 60 A

- RPMBB.UJ33.RQTL9.L3B2REE
- RPMBB.UJ33.RQTL9.L3B1REE
- RPMBB.UJ33.RQTL9.R3B2REE
- RPMBB.UJ33.ROTL9.R3B1REE

As in the previous case, with the difference that the current decay takes much longer.

The installation of a DC contactor has been requested

• RPMBB.UA23.RQS.L2B1 No REE	• RPMBB.UA63.RQS.L6B1 No REE
• RPMBB.UA27.RQS.R2B2 No REE	• RPMBB.UA67.RQS.R6B2 No REE
• RPMBB.UA43.RQS.L4B1 No REE	• RPMBB.UA83.RQS.L8B1 No REE
• RPMBB.UA47.RQS.R4B2 No REE	• RPMBB.UA87.RQS.R8B2 No REE
	• RPMBB.UXxx.RxxXx.xxxNo REE

with non-conformities – HC Day

Electrical circuit	Fault	Critical ramp rate
RPLB.RR53.RCBYHS4.L5B1	Cannot handle LHC di/dt	0.6 A/s (LHC: 0.66A/s)
RPLB.UA87.RCBYHS5.R8B1	Cannot handle LHC di/dt	0.46 A/s (LHC: 0.66A/s)
RPLB.UA87.RCBYH4.R8B1	Cannot handle LHC di/dt	0.6 A/s (LHC: 0.66A/s)
RPLB.UJ83.RCBCH7.L8B1	Quench @ discharge	> 2.5 A/s (LHC: 1A/s)
RPLB.UA23.RCBYH4.L2B2	Quench @ discharge	> 1.25 A/s (LHC: 0.66A/s)
RPLB.RR13.RCBCV8.L1B2	Quench @ discharge	1.2 A/s (LHC: 1A/s)
RPLB.UJ23.RCBCV7.L2B2	Quench @ discharge	> 2.5A/s (LHC: 1A/s)
RPLB.UA43.RCBYV5.L4B2	Cannot reach nominal current	Rated 72 A, it cannot go higher than 65 A

Dipoles

C21R1

C21R2

C21R3

C21R4

C21R5

C21R6

C21R7

C21R8

C21R1

"1-2"

"2-3"

"3-4"

"4-5"

"5-6'

"6-7"

"7-8"

"8-1'

"1-2"

Ouench Protection Reference Magnets

C21L2

C18L3

C18L4

C21L5

C21L6

C21L7

C21L8

C21L1

C21L2

Ouadrupoles

A20L2

A17L3

A18L4

A20L5

A20L6

A20L7

A20L8

A20L1

A20L2

A17L3

A21R1

A21R2

A20R3

A20R4

A20R5

A20R6

A21R7

A20R8

A21R1

- Quench in a reference magnet
 - "On Jan 30th 2008 it was rediscovered that the LHC contains really superconducting magnets"
- Symmetric quenches
- RCBCV10.L6B1: lost&found voltage tap -Avoid using this circuit!!!
- The undulator in 4L: missing resistor, different transfer functions and slow ramp rate
- Implementations to QPS implies new problems:
 - Sensitivity to reference magnet quench in any case
 - "Note that a similar problem will arise with the new bus fault detection system. The new system compares electrically adjacent magnets. The new system will signal a "fault" situation after each quench, because the quenched magnet will always be compared with a "healthy" one. It might be a good idea to enforce a magnetization cycle after each and every quench." *K-H MeB, "Superconducting Electrical Circuits" Chamonix09*
 - Transient spike problem for adjacent magnets
 - "The effect of the sudden voltage change is not very visible, while looking at the voltage difference over the two coils of one aperture, because the strong coupling between the coils washes out the differences in the response of the single coils. This is different for the difference in voltage between apertures (or, even worse, between magnets; this is probably an issue for the symmetric quench detection)." *K-H MeB, idem*

- Are there limitations to operate the machine at 5 TeV?
 - The installation of the symmetric quench detection is a *sine qua* non to go to high current in main circuits
 - 600A ramp rate and acceleration
 - 17 circuits were not fully commissioned
 - 85 circuits were commissioned with provisional acceleration/ramp rate values
 - 18 circuits were commissioned to an energy lower than 5 TeV
 - For the RCBXH/V1 circuits, a request was made to increase their ramp rate to reduce the time to collision; experiments would be needed, but LMC has judged this won't be necessary for the first run.

The changes in the optics in sector 3-4, due to the lack of spare or time contingencies, will imply a change in the number of corrector magnets per circuit; this means that QPS will have to re-calculate the inductance tables

LQASB.23R3 LQASB.27R3 LQOBA.28R3 LQOBA.32R3 PE in charge of the	item :	PE in char	rae of parent item in PPS -	
Clata	(electrical drawings for MQS cire	circuits S.3-4 (MO, cuits)	LHC-LQA-ES-0004	
Equipment concerned :	Drawings co	ncerned :	Documents concerned :	
DRAFT- Engi Brief d Following the incident several SSS. For 4 slo permitted to install SSS As consequence, a ne Baseline Layout 2008, g to identify the magn document for the Team HwC, LHC Operation, LH	neering Cha escription of the of 19/09/2009 in I ts, the limited ava compatible with the w LHC Layout is some lattice correct of slots concerne- ns that have to inter HC Layout and DB,	ange Req proposed cha LHC Sector 3-4 ilability of spar te LHC baseline under definiti tors are missin d by these cl ervene after the etc.)	Date: 10 March 2009 UEST - Class I nge(s) : 4, it was necessary to substitute e Arc-SSS cold masses, has not alayout 2008 . on where, respects to the LHC g. The scope of this document is hanges and provide a working e SSS installation (e.g. ELQA, LHC	
Hadron Collider project		micire	Date: 10 March 2000	
the	6	Engineering Cha Miche	ange requested by (Name & Div./Grp.) :	
	(EDMS Document No. 1111111	
ritzerland			LHC-PQ_PK	

04-03 2009

SUMMARY OF THE CYCLING TESTS PERFORMED ON A 6 kA LHC-TYPE

ELECTRICAL CONNECTION

A. Ballarino, A. Jacob

At the request of Karl Hubert Me β , a mechanical cycling test at room temperature was performed on a 6 kA "hand-prayer" type LHC electrical connection. A set-up was assembled to verify the reliability of the joint when subjected to thousands of mechanical cycles (see Fig.1). An electrical connection, supplied by the interconnection team, was tested in the configuration shown in Fig.1. A force of 88 N (as in EDMS procedure N. 533260) was applied at both ends of the connection. In total, 60000 cycles were performed. As visible in the following pictures, the degradation of the joint starts at 2200 cycle. At 11000 cycles the copper crimping box around the connection starts to open. At 30000 cycles the soldered joint is open along a length of about 50 %. At the end of the cycling tests, the joint is completely open.

The test configuration is more severe than the final configuration in the tunnel – the force is applied at a 90° angle. Conclusions should only be taken after comparing the results of these tests with those obtained after electrical cycling at nominal current and cryogenic temperatures.

3

... but not without problems

SSS006:

- missing solder between SC cable and Cu stabiliser in M3 busbars
- oxidised SC cables
- CERN fabrication
- Cutting M tubes and bellows, try re-soldering
- MB3383: ready for SM18 mid-week

• SSS279 (CM assembled at CERN): rebuilding the diode insulation, will be the last SSS for 3-4 at cold-testing in SM18

• Intensive week for final preparation and installation (e.g. SSS221 finished welding at 13h Thursday 12 March, left for Point 4 at 14h, lowered in the evening, installed with SSS369 during the night): "are we in a crash program or not?"

16 March, 2009

MMM and TEMB - Francesco Bertinelli

