Bad splice detection

Mike Koratzinos 19 March 2009

The first page

In this talk I will deal only with the splices of the main circuits (RB, RQD, RQF) since they are the most important as far as stored energy is concerned (other circuits: same principles apply)

Many thanks for the hard work and stimulating discussions with many people: Jim Strait, Rob Wolf, Bob Flora, Zinur Charifoulline, Piotr Jurkiewicz, Knud Dahlerup-Petersen, Reiner Denz, Ruediger Schmidt, Andrzej Siemko, Jean-Philippe Tock, Karl Schirm, Nuria Catalan Lasheras, Serge Claudet, Laurent Tavian ...

Why?

• Why do we need to measure splice resistances?

A bad splice can make quite a bit of damage...

...when the splice is on a high power circuit and not protected by a diode...

Also, a single MB magnet carries a significant amount of energy...

...as witnessed by the "Noell 4 (3004) incident" on 15.10.2002

QPS review

- The recent "LHC Enhanced Quench Protection System Review" held 24 -26 February 2009 (chair: Jay Theilacker, FNAL) made a series of recommendations including the following (under "operational issues"):
 - Prior to physics operation, measure all splice resistances (bus and magnet) using developed techniques
 - Define a dedicated operational procedure for taking, analyzing and responding to joint resistance measurement data.

...This is what we are set to do.

Splices, splices:

- *How many* are there in the machine?
- What kind?
- *How* have they been tested?
- To what level have they been tested?
- *How many* have they been tested?

Types of splices

- There are two broad categories of splices (categorised according to their position and hence to the damage they can potentially inflict)
- Splices between magnets (interconnect spices): these are not 'protected' by a diode and in case of rupture they are faced with the power of the complete circuit.

Main dipole bus: •2 interconnect splices Main quadrupole bus:4 interconnect splices

• Splices inside a cold mass cryostat (magnet splices): these are 'protected' by a diode, however they still have to deal with the power stored in one magnet, which is sufficient to potentially rupture the beam vacuum

Main dipole magnets:

- 4 interlayer splices per magnet
- 2 inter-pole splices per magnet
- 1 inter-aperture splice per magnet
- 1 internal bus splice per magnet

Main quadrupole magnets6 inter-pole splices per magnet4 internal bus splices per magnet

Courtesy K. Schirm

Number of splices in RB, RQ circuits

circuit	splice type	splices per magnet	number of units	total splices
RB	inter pole	2	1232	2464
RB	inter aperture	1	1232	1232
RB	interlayer	4	1232	4928
RB	internal bus	1	1232	1232
RB	interconnect	2	1686	3372
RQ	Inter pole	6	394	2364
RQ	internal bus	4	394	1576
RQ	interconnect	4	1686	6744
total				23912

Methods for testing splices

- The methods we have at our disposal to measure spice resistances (either directly or indirectly) are four:
 - The 'Keithley' method
 - The 'QPS snapshot' method
 - The calorimetric method
 - The ultrasound method

Testing methods: Keithley

- An ad-hoc method developed to look for interconnection splice resistances by using sensitive voltmeters.
- Labour intensive to set up. Only a limited number of splices were checked using this method (76).
- Will be superseded by the new QPS system.
- Out most accurate method to date → has yielded an accurate measurement of the average splice resistance

Accuracy: Keithley

- Accuracy is about 50pOhms
- Has been applied to 2.2% of all RB interconnects. Has not been applied to any RQ interconnects.
- Zero bad splices have been found

An RB average splice resistance has been measured to be: 310±50pOhms

The QPS snapshot method

- Using the QPS system in a non-standard (and not envisaged) way, we can measure the splice resistance difference between:
 - 3 versus 4 internal splices in dipole magnets (1 not measured)
 - 1 versus 2 internal splices per aperture in quadrupole magnets (2 not measured)
- We need at least 3 and preferably more current plateaus, staying at each plateau for a few minutes (plus the zero-level before and after the test)

QPS snapshots: accuracy

- Intrinsic accuracy seems to be better than 2nOhms, but there are systematic effects (still to be understood) that give resistances as big as 20nOhms
- → overall accuracy of the method today is 20nOhm

 About 6600 splices have been tested using this method and 2
 bad splices have been found

The calorimetric method

- Principle is to measure the ohmic heating of a high resistance splice
- The method becomes accurate only if a high current plateau is reached (7000A in 2008)
- Measures all splices (interconnect and magnet) with the granularity of one cryogenic cell (13 cryo cells per sector, mainly consisting of 16 magnets)
- Needs at least three current plateaus of one hour each, plus one hour before and one hour after the test
- Needs specific cryogenic regulation (takes time)
- Difficult method; need at least one shift per measurement (per circuit)

Calorimetry: accuracy achieved in 2008

- Accuracy is about 40nOhms (One sigma spread is 11-16nOhms)
- Has been applied to 57% of all splices

The ultrasound method

- Measures the reflectivity of a splice and hence if enough solder has been applied
- 4 measurements are taken transversely if 3 or 4 are bad, this constitutes a non-conformity
- Can be used mainly on interconnect splices
- Can only be used on exposed splices (at room temperature) – i.e. of limited use on a closed machine
- 1388 interconnect splices (+77 in sector 34 after the incident) were checked using ultrasound (both in the RB and RQ circuits).
- 1 bad splice was found (3 put of 4 measurements bad, NCR 836841). The splice was re-soldered

Number of splices tested

			splices tested				
circuit	splice type	total splices	QPS snapshots	calorimetry	Keithley	ultrasound	
RB	inter pole	2464	1540	1540	0	0	
RB	inter aperture	1232	770	770	0	0	
RB	interlayer	4928	3080	3080	0	0	
RB	internal bus	1232	0	770	0	0	
RB	interconnect	3360	0	2107	76	486	
RQ	Inter pole	2364	1182	1182	0	0	
RQ	internal bus	1576	0	788	0	0	
RQ	interconnect	6720	0	3372	0	979	
total		23876	6572	13609	76	1465	
% of total			27.5	56.9	0.3	6.1	

Level of splice testing: recap

- 76/10080 (0.7%) interconnect splices have been tested to an accuracy of 1nOhm
- A further 5403/10080 (54%) interconnect splices have been tested to an accuracy of 40nOhm.
- 6572/13796 (48%) inter-magnet splices have been tested to an accuracy of 20nOhm.
- A further 1558/13796 (11%) inter-magnet splices have been tested to an accuracy of 40nOhm

interconnect splices

magnet splices

Splice resistance non-conformities to date

- Interconnect splice C24-Q24R3: 200nOhms
- Inter-pole splice B16R1 (MB2334): 100nOhms
- Inter-pole(?) splice B32R6 (MB2303): 50nOhms
- Inter-aperture splice MB2420 (SM18): 30nOhms
- Interconnect splice RB Q20R1-A21R1: ?nOhms (ultrasound)

About half the machine was checked to 40nOhms and 1/3 to 20nOhms
What are the chances that in the other half of the machine (and in the first half with better accuracy) we will not find any more non-conformities in the splice resistances? – very slim

What level of splice resistance can be tolerated

- The nominal resistance of a splice is of the order of 0.3nOhms.
- Anything above 1nOhm is a non-conformity.
- This does not mean that the machine cannot run with a few such non-conformities
- The maximum tolerable level is a function of energy
- Interconnect splices have a higher damage potential but will be protected with a lower QPS threshold.
- Interconnect and magnet splices should have a different tolerance level than magnet splices

Facts – from operation in 2008

- An interconnect splice resistance of 200nOhms suffered a breakdown
- An inter-pole resistance of 100nOhms did not degrade for a small number [O(10)] of cycles
- A 100nOhm splice and a 30nOhm splice, when opened, were found to contain very little solder (and therefore with compromised mechanical integrity).

Limits from electrical simulations

- Considering only electrical effects, simulations give us the safe limit to avoid a thermal runaway
- Currently only RB interconnect splice simulations exist (A. Verweij, Chamonix 09) but work is in progress for other circuits and types of splices.
- The electrical simulation does not consider mechanical effects (metal fatigue for instance) associated with a non-conforming splice. Such effects should be taken into account.

"Busbar and Joints Stability and Protection", A.Verweij (Chamonix 09)

Tools for 2009

- Calorimetry and (new) QPS snapshots will be the tools at our disposal for comprehensive splice resistance measurements.
- The two methods are nicely complementary. The accuracy of the calorimetric method in 2008 was 40nOhms and of the QPS method 20nOhms. There is room for improvement for both methods.
- It is hoped that the QPS system will also give a method for day-to-day monitoring of splice resistances during operation. This is not practical for the calorimetric method, so it will probably always remain a specialist tool, performed always during dedicated periods.

Strategy for 2009 - basics

- Need to define a level of maximum tolerated splice resistance. This level should probably be a function of the energy we intent to run. This level will be different for interconnect and intermagnet splices (stricter for interconnect splices?)
- This should be defined before we start measuring.
- We should then proceed with a comprehensive measuring campaign.
- Invariably, an executive decision might need to be taken

Strategy to measure splices

- Problem of thermal runaway becomes important only above a certain current I_r (5000A in Arjan's simulation). Tests below that current can proceed without splice resistance measurements. (mechanical stability is not taken into account in the above. A bad splice can break with no warning there is a degree of risk even below 5000A!)
- Use calorimetry and QPS snapshots starting at I_r to verify before we can go to the next step (I_{runaway}*1.22 for instance, etc.)
- Do a complete census of all splices on the high-power circuits of the machine
- Stop and repair all splices with resistance above our maximum tolerable limit (according to the top energy we intend to run on)
- All splices with resistance above normal but below the maximum tolerable limit should be monitored daily for degradation.
- If such a degradation is seen, stop and repair

Your input is needed to define all those parameters!

End

Work still to be done

- Finalise simulation work on other circuits, splices and scenarios
- Get a better understanding of mechanical risks – ramp the MB2303 magnet for 1000 times in SM18?
- Work on understanding and improving the measuring methods for 2009