Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

András Ster^{1,}, M.Csanád², T.Csörgő¹, B. Tomasik³

¹MTA KFKI RMKI, Budapest, Hungary,
 ²ELTE University, Budapest, Hungary,
 ³Univ. Mat. Bela, Banska Bystrica, Slovakia

- Buda-Lund hydro model
- Observables
- Review of old central hydro results
- New non-central hydro results
- Conclusion

General form of a particle emission function

$$S(x,p)d^4x = f(x,p) p_{\mu} d\sigma^{\mu}(x)$$

With (Boltzmann) probability distribution for fluids

$$S(x,p)d^{4}x = \frac{g}{(2\pi)^{3}} \frac{p_{\mu}d\sigma^{\mu}(x)}{\exp\left(\frac{p_{\mu}u^{\mu}(x)}{T(x)} - \frac{\mu(x)}{T(x)}\right) + s_{q}}$$

2

 $\sigma(x)$ hypersurfaceu(x)flow field $\mu(x)$ chemical potentialT(x)temperature

must comply with the 5 differential equations of fluid dynamics:

- continuity
- momentum conservation
- energy conservation

Equations of non-relativistic inviscid fluid dynamics

$$\partial_t n + \nabla \cdot (n\mathbf{v}) = 0,$$

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -(\nabla p)/(mn),$$

$$\partial_t \epsilon + \nabla \cdot (\epsilon \mathbf{v}) = -p\nabla \cdot \mathbf{v},$$

Not closed, EoS needed, for example

$$p = nT$$

$$\epsilon = \kappa p$$

WPCF'09, CERN, 14/10/2009

A. Ster, RMKI, Hungary

5 model principles

- 3D expansion with axial or ellipsoidal symmetry
- Local thermal equilibrium
- Analytic expressions for the observables
- Reproduction known exact hydro solutions (nonrelativistic, hubble and bjorken limits)
- Core-halo picture (long lived resonances)

M. Csanád, T.Csörgő, B. Lörstad: Nucl.Phys.A742:80-94,2004; nucl-th/0310040

The Buda-Lund Hydro Model **Buda-Lund form of hydro fields:** in several cases parametric solutions of hydrodynamics see M. Csanád's talk $d^{4}\sigma(x) = u(x)H(\tau)d^{4}x$ $u(x) = (\gamma, \sinh \eta_x, \sinh \eta_y, \sinh \eta_z)$ $\frac{\mu(x)}{T(x)} = \frac{\mu_0}{T_0} - s$ $\frac{1}{T(x)} = \frac{1}{T_0} \left(1 + \frac{T_0 - T_s}{T_s} s \right) \left(1 + \frac{(T_0 - T_e)}{T_e} \frac{(\tau - \tau_0)^2}{2\Delta \tau^2} \right)$ 6 A. Ster, WPCF'09, CERN, 14/10/2009 **RMKI**, Hungary

The Buda-Lund Hydro Model (2)

Where (in case of axial symmetry): igodol

$$H(\tau) = \frac{1}{(2\pi\Delta\tau^2)^{1/2}} \exp\left(-\frac{(\tau-\tau_0)^2}{2\Delta\tau^2}\right)$$

$$s = \frac{r_t^2}{(2R_G^2)} + \frac{(\eta - y_0)^2}{2\Delta\eta^2}$$

 $\sinh(\eta_t) = \frac{\langle u_t \rangle r_t}{R_G} = H_t r_t$ H:tra H, :transverse Hubble constant 7 **RMKI**, Hungary A. Ster,

Observables

CERN.

$$\mathbf{N_1}(p) = \int d^4 x \, S(x,p)$$

$$C_2(Q, p) = 1 + \lambda_* \exp(-Q_o^2 R_o^2 - Q_s^2 R_s^2 - Q_l^2 R_l^2)$$

$$S(x, p) = S_c(x, p) + S_h(x, p)$$

$$N_1(p) = \frac{1}{\sqrt{\lambda_*}} \int d^4 x S_c(x, p)$$

A. Slei,

RIVINI, HUNGALY

RMN

Buda-Lund Hydro: Observables

• Final form of the Invariant Momentum Distribution:

$$N(\mathbf{p}) = \frac{g}{(2\pi)^3} \overline{E}\overline{V}\overline{C} \exp\left(-\frac{p \cdot u(x) - \mu(x)}{T(\overline{x})} + s_q\right)$$
$$\overline{E} = m_t \cos h(\overline{\eta})$$
$$\overline{V} = 2\pi^{(3/2)} \overline{R}_{par} \overline{R}_t^2 \frac{\overline{\Delta\tau}}{\Delta\tau}$$
$$\overline{C} = \frac{1}{\sqrt{\lambda_*}} \exp(\frac{\overline{\Delta\eta}^2}{2})$$

Buda-Lund Hydro Model: HBT radii

• Final form of the HBT radii:

 $\overline{R_t}^2 = \overline{R_G}^2 / [1 + (\langle u_t \rangle^2 + (T_0 - T_s) / T_s) \overline{E} / T_0]$ $\overline{R_{par}}^2 = \tau_0^2 / \Delta \overline{\eta}^2$ $\Delta \overline{\eta}^2 = \Delta \eta^2 / (1 + \Delta \eta^2 \overline{E} / T_0)$ $\Delta \overline{\tau}^2 = \Delta \tau^2 / [1 + ((T_0 - T_e) / T_e) \overline{E} / T_0]$

$$\tau = \tau_0, \qquad \overline{r_x} = u_t R_G p_t / [T_0 + \overline{E}(u_t)(T_0 - T_s) / T_s]$$

$$\overline{r_y} = 0$$

$$\overline{\eta} = (y_0 - y) / [1 + \Delta \eta^2 m_t / T_0]$$

WPCF'09, CERN, 14/10/2009

A. Ster,

RMKI, Hungary

Buda-Lund fits to NA22 h+p

N. M. Agababyan et al, EHS/NA22 , PLB 422 (1998) 395 T. Csörgő, hep-ph/001233, Heavy Ion Phys. 15 (2002) 1-80

WPCF'09, CERN, 14/10/2009

11

Emission function from NA22 h+p

A. Ster,

RMKI

RMKI, Hungary

BudaLund fits to SPS Pb+Pb

A. Ster, T.Csörgő, B. Lörstad, Nucl.Phys. A661 (1999) 419-422, nucl-th/9907338

Emission function from SPS Pb+Pb

WPCF'09, CERN, 14/10/2009

14

BudaLund fits to RHIC Au+Au

BudaLund hydro fits to 130 AGeV Au+Au

WPCF'09, CERN, 14/10/2009

RMKI, Hungary A. Ster,

BudaLund hydro fits to 130 AGeV Au+Au

BudaLund —

4

6

η

π 🛉 🔺

π 🗼 📥

2

E.

Buo

8

6

4

2

0

0

0.5

m, (GeV)

Emission function from RHIC Au+Au

BudaLund fits to RHIC Au+Au

BudaLund v1.5 fits to 200 AGeV Au+Au

RMK

BudaLund v1.5 fits to 200 AGeV Au+Au

Emission function from RHIC Au+Au

Buda-Lund fit results

BL v1.5 parameters	RHIC 200 GeV Au+Au	RHIC 130 GeV Au+Au	Pb+Pb SPS	h+p SPS
T ₀ [MeV]	196 ± 13	214 ±7	139 ± 6	140 ± 3
<ut></ut>	1.6 ± 0.2	1.0 ± 0.1	0.55 ± 0.06	0.20 ± 0.07
R _G [fm]	13.5 ± 1.7	28.0 ± 5.5	7.1 ± 0.2	0.88 ± 0.13
R _s [fm]	12.4 ± 1.6	8.6 ± 0.4	28 ± 21	1.4 ± 0.3
T _{surf} [MeV]	0.5 T ₀	0.5 T ₀	0.5T ₀	0.5T ₀
τ ₀ [fm/c]	5.8 ± 0.3	6.0 ± 0.2	5.9 ± 0.6	1.4 ± 0.1
∆τ [fm/c]	0.9 ± 1.2	0.3 ± 1.2	1.6 ± 1.5	1.3 ± 0.3
Δη	3.1 ± 0.1	2.4 ± 0.1	2.1 ± 0.4	1.36 ± 0.02
T _{evap} [MeV]	117 ± 12	102 ± 11	87 ± 24	-
μο ^π [MeV]	-2 ± 14	63 ± 11		
μ ₀ ^κ [MeV]	16 ± 19	98 ± 19		
μ₀ ^{p-} [MeV]	97 ± 28	315 ± 27		
μ _B [MeV]	61 ± 52	77 ± 38	0 fixed	0 fixed
χ ² /NDF	114/208=0.55	158/180=0.9	342/277=1.2	642/683=0.9
CL	100 %	88 %		
			$\beta_t = -$	$\frac{\langle u_t \rangle}{\sqrt{1 + \langle u_t \rangle^2}}$
F'09, CERN, <u>14/1</u>	0/2009	19	A. Ster, RMM	KI, Hungary

WPC

BudaLund fits to RHIC preliminary p+1

BudaLund v1.5 fits - p+p prel. at RHIC

RMK

BudaLund v1.5 fits - p+p data at 200 GeV

Emission function from RHIC p+p

BudaLund fit results

BL v1.5 parameters	RHIC 200 GeV (prel) p+p	RHIC 130 GeV Au+Au	Pb+Pb SPS	h+p SPS
T₀ [MeV]	289 ± 8	214 ±7	139 ± 6	140 ± 3
<u<sub>t></u<sub>	0.04 ± 0.26	1.0 ± 0.1	0.55 ± 0.06	0.20 ± 0.07
R _G [fm]	1.2 ± 0.3	28.0 ± 5.5	7.1 ± 0.2	0.88 ± 0.13
R _s [fm]	1.13 ± 0.16	8.6 ± 0.4	28 ± 21	1.4 ± 0.3
T _{surf} [MeV]	0.5 T ₀	0.5 T ₀	0.5T ₀	0.5T ₀
τ <mark>ο [fm/c]</mark>	1.1 ± 0.2	6.0 ± 0.2	5.9 ± 0.6	1.4 ± 0.1
∆τ [fm/c]	0.1 ± 0.5	0.3 ± 1.2	1.6 ± 1.5	1.3 ± 0.3
Δη	3.0 fixed	2.3 ± 0.4	2.1 ± 0.4	1.36 ± 0.02
T _{evap} [MeV]	90 ± 42	102 ± 11	87 ± 24	-
χ^2/NDF	89/71	158/180	342/277	642/683

BudaLund fits to NA49 data (preliminary HBT, work in progress)

23

BudaLund hydro fits to 158 AGeV Pb+Pb

BudaLund hydro fits to 158 AGeV Pb+Pb

WPCF'09, CERN, 14/10/2009

RMKI

BudaLund fits to NA49 data (preliminary HBT, work in progress)

BudaLund hydro fits to 158 AGeV Pb+Pb

24

BudaLund fit results of NA49 data

BudaLund parameters	158 AGeV	80 AGeV	40 AGeV	30 AGeV	20 AGeV
T ₀ [MeV]	143 ± 7	109 ± 7	106 ± 4	107 ± 7	86 ± 3
T _e [MeV]	141 ± 5	105 ± 3	103 ± 2	101 ± 3	86 ± 2
H _t [c/fm]	0.099 ± 0.003	0.104 ± 0.004	0.111 ± 0.003	0.110 ± 0.005	0.106 ± 0.004
H _l [c/fm]	0.155 ± 0.005	0.129 ± 0.005	0.123 ± 0.003	0.120 ± 0.004	0.107 ± 0.002
R _G [fm]	7.1 ± 0.2	7.9 ± 0.4	9.8 ± 0.7	9.8 ± 0.9	12.1 ± 1.7
R₅ [fm]	18.7 ± 2.0	24.5 ± 3.8	21.5 ± 1.8	20.7 ± 3.0	25.5 ± 2.7
∆τ [fm/c]	3.3 ± 0.3	4.1 ± 0.4	3.9 ± 0.3	3.7 ± 0.3	3.2 ± 0.3
Δη	1.5 ± 0.2	1.4 ± 0.2	1.2 ±0.1	1.1 ± 0.1	1.0 ± 0.1
μ₀ ^{π-} [MeV]	88 ± 7	109 ± 10	79 ± 6	77 ±9	88 ± 6
μο ^{Κ-} [MeV]	61 ± 16	151 ± 21	122 ± 12	128 ± 20	163 ± 12
μο ^{Κ+} [MeV]	137 ± 16	236 ± 21	224 ± 12	230 ± 21	257 ± 12
μο ^ρ [MeV]	403 ± 29	593 ± 38	635 ± 22	642 ± 38	700 ± 21
χ ² /NDF	198 /126 !	129 /128	200 /116 !	160 /116	128 /95
$\langle u_t$	$\rangle = \mathbf{H}_{\mathbf{t}}$	·R _G	$ au_0$	$= 1/\mathbf{H}_{\mathbf{l}}$	
WPCF'09, CE	ERN, 14/10/2009		25	A. Ster, RMKI,	Hungary

source parameter excitation functions

WPCF'09, CERN, 14/10/2009

RMKI, Hungary A. Ster,

Some other hydro models

Models with acceptable results:

nucl-th/0207016	Buda-Lund / core-halo model.
	T.Csörgő. A. Ster, Heavy Ion Phys. 17
	(2003) 295-312.
nucl-th/0204054	Multiphase Trasport model (AMPT).
	Z. Lin, C. M. Ko, S. Pal.
nucl-ex/0307026	Blast wave model. F. Retiére for STAR.
nucl-th/0205053	Hadron cascade model. T. Humanic.

Other interesting models:

nucl-th/0208068 hep-ph/0209054 3D hydro model. T. Hirano, & T.Tsuda. Hadron model. W.Broniowski, A. Baran W. Florkowski.

27

Femptoscopy of QGP

BudaLund fits indicate:

scaling of HBT radii

BudaLund prediction (1995): each R² ~ 1 / m_t

Conclusions on central collisions

- BudaLund model describes single particle distributions, rapidity distributions, HBT correlation function radii w/o puzzle in the following reactions: h+p @SPS, p+p @RHIC, Pb+Pb @SPS, Au+Au @RHIC
- Rings of fire in h+p @SPS and p+p @RHIC
 Fireballs in Pb+Pb @SPS and Au+Au @RHIC
- $T < T_c$ in h+p and Pb+Pb @SPS $T > T_c$ in p+p and Au+Au @RHIC ; T_c (=172±3MeV) WPCF'09, CERN, 14/10/2009 29 A. Ster, RMKI, Hungary

asBuda-Lund fits to non-central RHIC data Model extensions to ellipsoidal symmetry for elliptic flow:

calculate 2nd harmonic coefficient of anisotropy:

$$\frac{N(p)}{d\Phi} \propto 1 + 2v_2(p)\cos(2\Phi)$$

BudaLund fits to non-central RHIC data

Exact non-relativistic result for elliptic flow:

$$v_2 = \frac{I_1(w)}{I_0(w)} +$$

$$w = \frac{p_t^2}{4\overline{m}_t} \left(\frac{1}{T_{*,y}} - \frac{1}{T_{*,x}}\right)$$

$$\overline{m}_t = m_t \cosh(\eta_s - y)$$

$$T_{*,i} = T_0 + m_t \, \dot{X}_i^2 \frac{T_0}{T_0 + m_t a^2}$$

For detailed calculations see: M. Csanád et al., hep-ph/0801.4434v2

WPCF'09, CERN, 14/10/2009

 $a^2 = \frac{T_0 - T_s}{T_c} = \left\langle \frac{\Delta T}{T} \right\rangle$

A. Ster, RMKI, Hungary

I_n: modified Bessel functions

BudaLund fits to non-central RHIC data

Model extensions to ellipsoidal symmetry

$$\begin{aligned} R_{o}^{2} &= R_{*,x}^{2} \cos^{2} \varphi + R_{*,y}^{2} \sin^{2} \varphi + \beta_{o}^{2} \Delta \tau_{*}^{2} & (36a) \\ &= \frac{R_{*,x}^{2} + R_{*,y}^{2}}{2} + \beta_{o}^{2} \Delta \tau_{*}^{2} - \frac{R_{*,y}^{2} - R_{*,x}^{2}}{2} \cos(2\varphi) \\ R_{s}^{2} &= R_{*,x}^{2} \sin^{2} \varphi + R_{*,y}^{2} \cos^{2} \varphi & (36b) \\ &= \frac{R_{*,x}^{2} + R_{*,y}^{2}}{2} + \frac{R_{*,y}^{2} - R_{*,x}^{2}}{2} \cos(2\varphi) , \\ R_{os}^{2} &= \frac{R_{*,y}^{2} - R_{*,x}^{2}}{2} \sin(2\varphi) , & (36c) \\ R_{l}^{2} &= R_{*,z}^{2} , & (36d) \end{aligned}$$

for asHBT radii:

)

$$R_{*,x}^{2} = X^{2} \left(1 + \frac{m_{t} \left(a^{2} + \dot{X}^{2} \right)}{T_{0}} \right)^{-1},$$
)

$$R_{*,y}^{2} = Y^{2} \left(1 + \frac{m_{t} \left(a^{2} + \dot{Y}^{2} \right)}{T_{0}} \right)^{-1},$$

$$R_{*,z}^{2} = Z^{2} \left(1 + \frac{m_{t} \left(a^{2} + \dot{Z}^{2} \right)}{T_{0}} \right)^{-1}.$$

 $\begin{array}{c} X=R_X, Y=R_Y \\ We found that ,,a'' is different in each direction \\ WPCF'09, CERN, 14/10/2009 \\ \end{array} \qquad \begin{array}{c} Y \\ 32 \\ A. Ster, RMKI, Hungary \end{array}$

asBudaLund fits to non-central RHIC data

34

BudaLund hydro fits to 200 GeV Au+Au

BudaLund hydro fits to 200 GeV Au+Au

A. Ster,

RMK

RMKI, Hungary

asBuda-Lund fit results

of non-central RHIC data

	BudaLund	RHIC 200 AGeV	RHIC 200 AGeV	
	source	central	non-central	
	parameters	(0-30%)	(20-30%)	
	T ₀ [MeV]	196 ± 13	179 ± 7	
	T _e [MeV]	117 ± 12	119 ± 7	
	H _x [c/fm]	0.118 ± 0.013	0.150 ± 0.002	
	H _Y [c/fm]		0.111 ± 0.001	
	H _z [c/fm]	0.172 ± 0.008	0.187 ± 0.005	
	R _X [fm]	13.5 ± 1.7	7.8 ± 0.3	
	R _Y [fm]		7.2 ± 0.2	
	R _{/s} [fm]	12.4 ± 1.6	12.2 ± 0.9	
	R _{ys} [fm]		12.5 ± 0.8	
	∆τ [fm/c]	0.9 ± 1.2	2.7 ± 0.2	
	Δη	3.1 ± 0.1	2.5 ± 0.3	
	μο ^π [MeV]	-2 ± 14	40 ±8	
	μο ^κ [MeV]	16 ± 19	55 ± 13	
	μο ^p [MeV]	97 ± 28	178 ± 22	
	χ^2/NDF	114 /208	261 /152	
		(0	L w/o radii ~10%)	
1/4	0/2000	35	A Stor - DA	
F /	0/2009		A. Ster, Riv	iki, nungary

Universal v2 scaling predicted by BudaLund model (2003)

WPCF'09, CERN, 14/10/2009

37

- asBuda-Lund model describes single particle distributions, elliptic flow and asHBT correlation function radii of 20-30% centrality data of 200 GeV Au+Au reactions at RHIC.
- We find that T drops to 179 MeV from ~200 MeV of central collisions.
- The source at freeze-out was found to be slightly extended in the reaction plane $(R_X > R_y)$, in agreement with M. Csanád's conclusion

