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Pion azimuthal HBT oscillations measure freeze-out
eccentricity

J. Adams et al. (STAR Collaboration), PRL 93 (2004) 012301

Azimuthally oscillating HBT radii
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extracted a la Retiere & Lisa, PRC 70 (2004) 044907
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• On average (as probed by low-momentum pions) source loses about half its initial eccentricity

until pion freeze-out.

• This is roughly consistent with ideal hydrodynamic predictions: Heinz & Kolb, PLB 542 (2002) 216

• Can we do better and test whether hydro correctly predicts the evolution of the source eccentricity?
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Photon elliptic flow tracks early flow evolution

Differential photon v2

Chatterjee et al. PRL 96 (2006) 202302

Evolution of pT -integrated v2

Chatterjee, Srivastava, UH, arXiv:0901.3270 [nucl-th]
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• Time evolution of total pT -integrated photon v2 tracks closely that of the QGP phase.

• At high pT , photon v2 is dominated by QGP radiation, and v2(pT ) tracks time evolution of

photon v2 (larger pT ↔ earlier times)

Question: Can one follow in parallel the evolution of the fireball eccentricity
in configuration space, through azimuthal photon HBT interferometry?
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Problem: Pion studies suggest that to measure eccentricity of entire fireball must use
low-KT pion pairs (Retiere & Lisa), but to study QGP photons we need KT > 1 GeV!

Pion emission function at KT = 0 and 0.5GeV

Heinz & Kolb, PLB 542 (2002) 216
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Is this the end of a nice idea? No!
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Pions are emitted from the surface, photons from
the volume!

Constant temperature surfaces from ideal hydro

Song & UH, PRC 77 (2008) 064901
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We’ll see that surface vs. volume emission makes all the difference!
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HBT formalism for photons (I)

The photon spectrum and 2-photon correlation function

C(pa, pb) =
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dN
d3pad3pb
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d3pb

can be expressed through the photon emission function S(x, K) as

E
dN

d3p
=

Z

d4x S(x, p) ,

C(q, K) = 1 ± 1

gs

˛

˛

R

d4x S(x, K) ei q·x˛
˛

2

R

d4x S
`

x, K+q

2

´ R

d4y S
`

y, KK−q

2

´

= 1 ± 1

gs

D(q, K)

˛

˛

˛

˛

˛

R

d4x S(x, K) ei q·x
R

d4x S(x, K)

˛

˛

˛

˛

˛

2

,

where gs=2 for photons and

D(q, K) =

˛

˛

R

d4x S(x, K)
˛

˛

2

R

d4x S(x, K+q

2)
R

d4x S(x, K−q

2)

is the “smoothness correction factor”.
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HBT formalism for photons (II)

Smoothness approximation:

D(q,K) → 1

Breaks down at small K:

0 0.05 0.1 0.15 0.2
q{o,s,l} (GeV)

0

5

10

15

20

25

30

D
(q

,K
)

D(qo, qs=ql=0, KT=0.05 GeV)
D(qs, qo=qs=0, KT=0.05 GeV)
D(ql, qo=qs=0, KT=0.05 GeV)
D(qs, qo=ql=0, KT = 0.2 GeV)

Less of a problem for pions due to finite
rest mass.

On-shell approximation:

K0 = (Ea+Eb)/2 ≈ EK =⇒ β ≡ K

K0 ≈ vpair
c
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So for K�q/2, β → 2K
q

6=
vpair

c and

β = β(K, q) in general!

For massless photons, both approximations break down for small
K <

∼
1/Rsource !
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Gaussian sources

For a source that has Gaussian shape in x-space:

Csmooth(q, K) = 1 + λ(K) exp

2

4−
X

i,j=o,s,l

qi qj R2
ij(K)

3

5 ,

where the width parameters (“HBT radii”) Rij can be obtained from the space-time
variances of the source S(x,K) as

R2
ij(K) = 〈(x̃i − βit̃)(x̃j − βj t̃)〉

With the on-shell approximation, these variances depend only on K.

For low-KT photons, R2
ij → R2

ij(q, K), and the Gaussian exponent becomes (Y =0)
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For q�2K, the outward correlator does not depend on the emission duration!
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Photon correlator at (very) small pair momentum
KT = 0.01GeV

Hydrodynamic photon source
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• Blue dotted line: analytic expression in terms of variances for q�2K

• Brown dash-dotted dotted line: analytic expression in terms of variances for q�2K

• The analytic expressions work well for the hydro source with Gaussian rapidity cutoff at ∆ηs = 1/
√

2.

• They fail for the full (2+1)-d hydro source because for KT → 0 the photon emission function becomes exactly

boost-invariant, with 〈t̃2〉 and 〈z̃2〉 → ∞.

• For q�2K the slopes of the outward and sideward correlators agree, i.e. 〈x̃2
o〉 = 〈x̃2

s〉 as necessary for an

azimuthally symmetric source at b = 0.

• Longitudinal correlator is non-Gaussian, due to boost-invariant expansion

• Smoothness correction D(q, K) introduces additional non-Gaussian features in the transverse directions

• ⇒ No shortcuts! Must compute full correlator and extract HBT radii from Gaussian fits.
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Photon correlations from central Au-Au collisions at RHIC (I)

KT = 0.05GeV
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• Strong non-Gaussian features in ql direction =⇒ restrict longitudinal fit range to ql<0.02GeV

in 3-D Gaussian fit, in order to avoid contamination of transverse fit radii in azimuthal analysis at

b 6= 0.

• Strong effect from smoothness correction factor in sideward direction
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Photon correlations from central Au-Au collisions at RHIC (II)

• Dashed: 1-D Gaussian fit radii

• Solid: 3-D Gaussian fit radii

• Dotted: includes smoothness correc-
tion D(q, K)
(strong effects for small KT , but ne-
gligible above KT = 0.1 GeV)

• Large difference between Ro and Rs

(black and red curves) at all KT ,
from emission duration

• Huge non-Gaussian effects in Rl

(blue curves)
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Photon correlations from central Au-Au collisions at RHIC (III)
Srivastava & Chatterjee, arXiv:0907.1360 [nucl-th]
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Interfering QGP and HG sources!?

• Srivastava & Chatterjee see interfe-
rence structure in outward correla-
tor (black line) at KT

>∼ 2 GeV, from
time-separated (by about 12 fm/c)
early QGP (red) and late HG (blue)
emission sources.

• Needs well-separated sources! Requi-
res large KT to reduce thermal smea-
ring.

• Uses different hydro model than our
work.

• Have so far been unable to reproduce
this feature with our hydro.

• Very interesting if true!
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Separating QGP and HG photon sources
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• QGP source is smaller and features smaller HBT radii than HG source, in all three directions

• For KT>2GeV, HBT radii from total source agree with those from QGP source =⇒ hadronic

photons negligible at KT>2GeV

• At low KT , total source shows larger emission duration effects than either QGP or HG source

alone (not surprisingly)
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Photon emission functions from non-central Au-Au collisions
Quite different from pion emission

functions!

• At KT = 0, emission function is centered

at the origin, and azHBT measures eccentri-

city of time-integrated source (weighted by

photon intensity towards early times)

• At small KT 6=0, emission function moves

slightly outward, due to flow boost; azHBT

still measures eccentricity of time-integrated

source

• At large KT
>∼ 2GeV, emission function mo-

ves back to the center and becomes more

focussed around the point of highest tem-

perature; boosted HG source causes small

bulge in outward direction, but this bulge

is weak and doesn’t much distort azHBT.

azHBT measures early eccentricity.

• Note: No squeezing to the edge as for pions!

At high KT , homogeneity region (and its

eccentricity) reflects entire fireball, not just

some small sliver near the fireball edge!
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Azimuthal oscillations of HBT radius parameters

Pions
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• KT -dependence of Φ-averaged Rs smaller for photons than pions ↔ less radial flow at early times

• KT -dependence of Φ-averaged Ro larger for photons than pions ↔ larger emission duration contribution for low-KT
photons

• R2
os oscillation amplitude for photons almost independent of KT and at small KT larger than for pions

• R2
os oscillation almost purely sin(2Φ):

R2
os = cos(2Φ)〈x̃ỹ〉 + sin(2Φ)

〈ỹ2−x̃2〉
2 + β(q)

 

〈x̃t̃〉 sin Φ − 〈ỹt̃〉 cosΦ

!

suggests that geometric deformation dominates and is larger than for pions due to early emission.
Works even at KT = 0 where single photon spectrum is dominated by HG!
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Normalized azimuthal oscillation amplitudes and source
eccentricity
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• Eccentricity εx = 2 R2
s,2/R2

s,0

• For pions this holds only in the limit

KT → 0, but for photons this works

up to KT ∼ 2GeV.

=⇒ KT -dependence of normalized sideward oscillation amplitude maps time-
dependence of source eccentricity!
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Conclusions

• Photons are emitted from the space-time volume, pions from the freeze-out sur-
face of the fireball =⇒ quite different HBT characteristics

• Due to masslessness of photons, smoothness and on-shell approximation break
down at low KT , introducing non-Gaussian shape corrections =⇒ No shortcuts!
– must compute full correlator without approximations and fit it in exactly the
same way as done in experiment.

• At low KT<1/Rsource, outward correlator develops 2-slope structure that allows
to separate time and geometry (i.e. spatial width in outward direction and emis-
sion duration) at a single KT -value!

• Oscillatory structure in outward correlator at KT > 1−2 GeV from two-source
(QGP – HG) interference? (Srivastava & Chatterjee)

• At all KT emission function is volume-dominated and tracks the fireball deforma-
tion at the corresponding average emission time.

• KT -dependence of normalized sideward oscillation amplitude allows to track time-
dependence of fireball eccentricity.

• Photon azHBT = a window with a view!
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