
NA62 Triggering
Adam Pearson

What is NA62 (Kaon Factory)
● “NA62 initially proposed to measure the

very rare kaon decay K+-> pi+ nu nubar at
the CERN SPS to extract a 10%
measurement of the CKM” (Cabibbo–
Kobayashi–Maskawa/quark mixing matrix)
“parameter |Vtd|.” (Squaring this gives the
probability of a top quark transitioning into a
down quark, currently the best
measurements give this to be about .
00867)

● Uses “400 GeV/c protons from the SPS”

TDAQ
● Many detectors/layers of

processing ultimately give
bursts of data fragments to the
L1 Triggering

● Triggering must be done
extremely quickly (currently
limited by time before next
burst)

L1/L2 Triggering
● Data fragments come in, are built into

events
● Each event is processed/sent to the

L1 trigger
● If triggered on, sent back around to

be processed again/sent to the L2
trigger

What’s Wrong with This?
● Currently there is one copy of the data

that is tossed around from process to
process

● If any process crashes or slows down
for any reason, it causes the entire chain
of processes to crash or slowdown…
textbook bottleneck

● If any data isn’t processed fully before
the next burst comes in, it is thrown out

○ Event IDs are reused in each burst, so Event

1 from Burst 1 could/would conflict with Event

1 from Burst 2… how to deal with this other
than just throwing out the old stuff?

Initial Solution?
● Decouple the processes, i.e. allow them

to all act independently of each other!

… But then what happens to that one copy of
data being tossed between processes, what
happens if two processes want to change the
same data or if one process dies while working
on a piece of data…???? This seems awfully
dangerous from a memory management point
of view!

How Ever Could These Problems Be Solved??
● MANAGED SHARED MEMORY
● There are several ways to do this,

but a nice little C library from
Boost (a collection of
nifty/experimental C libraries)
called Interprocess offers a very
clean solution

● Implementing this in the current
code is now the difficulty…

● The only seeming downside is
more memory overhead… but it’s
persistent!

● As for throwing old
events out… why not
label each one with a
burst ID as well (this will
only delay the eventual
need to throw out, but by
a large amount)

● Also, speeding up
current processing will
reduce the need to throw
old events out even
more

Main Sources
https://na62.web.cern.ch/NA62/

https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%
93Maskawa_matrix

https://na62.web.cern.ch/NA62/
https://na62.web.cern.ch/NA62/
https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix
https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix
https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix

