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Why am I talking about automation?

• Distributed computing without automation:
‒ Is monotonous!

‒ Setting up nodes is boring.

‒ Is Unreliable!
‒ Human errors creep in.

‒ Does not scale!
‒ Upgrading 20 nodes takes all day?

‒ Installing 100 disks is tedious.

‒ Has no recovery strategy!
‒ Redeploying a server from bare metal often cures issues!
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Overview

• Comparing Configuration Management Systems.
‒ Mostly from salt perspective.

• What can already be done with Salt for Ceph.
‒ With work we have already done.

• What we will be doing with salt next.
‒ Moving from configuration to management.



●Comparing configuration 
management systems.
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Salt, Puppet, Chef, Ansible

• Configuration management tools are now common.
‒ Found DESY HEPIX talk replacing one over 30 years ago.

• CERN does not write their own anymore.
• CMS mostly do the same thing.

‒ Manage state transitions on many computers.

‒ Take booted bare OS to a production service 
‒ Non-interactively.
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CMS: Usual structure to user

• Made up of a library of reusable modules.
• Have a DSL to call the libraries

‒ Express dependency

‒ Include other DSL files.

‒ Express branching.

• Have meta-data about nodes.
‒ Can query this meta-data in the DSL.
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Puppet Comparing to Salt.

• Puppet has biggest deployment base.
‒ CERN our hosts use Puppet.

• Polls master server for config to apply.
‒ Minimized dependency on master service.

‒ Salt was first a remote execution service.
‒ Similar to mcollective.

‒ Puppet added mcollective much later.

‒ Salt added state management later.

• Puppet is ruby based while Salt is python based.
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Chef comparing to Salt

• Chef has the biggest deployment base in Germany.
‒ Quiet mature but I find docs confusing.

‒ Newer than puppet.

• Chef relies on polling.
‒ Salt allows you to push configuration to client.

• Chef uses json for config
‒ Salt uses yaml.

• Chef is ruby based / Salt is python based.
I don't know chef as well as I know puppet and salt
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Ansible comparing to Salt

• Ansible uses ssh rather than agents.
‒ Pushes commands to clients.

‒ Low startup costs.

‒ Fast growing community (Red hat now owns Ansible).

• Python based just like salt.
• Newer than puppet and chef
• Great test suite.

I don't know ansible as well as I know puppet and salt
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Salt compared to other CMS.

• Youngest major player.
• Steep learning curve.

‒ Documentation is improving, but many components

• More ambitious in making an event based site.
‒ More moving parts (beacons, mines, pillars, reactors)

• Based on Event bus.
‒ Events sent between 
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Salt : Programming your data center

• Basic usage similar to Puppet / Chef / Ansible
‒ Thin DSL in YAML calling modules.

• Advanced usage:
‒ Database integration 

‒ Pillar (as a data source) Mine (For read write)

‒ Monitoring events.
‒ Beacons (can dynamically be started on minions)

‒ Event chaining.
‒ Reactors, Orchestration engine.
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Salt overview

• Message Queue at its core (zmq).
‒ Master/Slave (Minion) model. 

• Agent based, Event based.
• Think of it as a framework for distributed computing.

‒ Extendable modules (master and minion).

‒ Database modules (master and minion).
‒ Backend can be simple jaml to full RDBMS (called pillars or mines)

‒ Extendable attributes (called grains).

‒ Events can be fired by any module.



●What can already be done with 
Salt for Ceph.
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What we in salt-ceph trying to do?
• Make ceph quick and easy to setup.

‒ You should not require the skills of a CERN admin.

• Do everything we can in parallel.
‒ You should not have to wait (more than 1 min).

• Easy to support.
‒ Clear errors, logs, debugging, dependency management.

• Automate Ceph management.
‒ Now this is hard! (See later in the talk)

• Multiple user interfaces
‒  Version controlled config files and GUI operation.
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Salt execution modules

• Provide components of configuration.
‒ Present a name to the DSL

‒ Contain methods to be called by DSL.

‒ No restrictions on return structure

• Example calling from salt DSL the ceph module:
prepare_vdb:
  module.run:
    - name: ceph.osd_prepare
    - kwargs: {
        osd_dev: /dev/vdb
        }
    - require:
      - module: keyring_osd_auth_add
      - pkg: ceph_packages_osd
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Background : Ceph Components

• Ceph has a nice dependency hierarchy
‒ Keyrings (have a hierarchy of dependencies)

‒ MON service (depend on keys)

‒ OSD service (depend on mon + keys)

‒ RGW service (depend on osd + mon + keys)

‒ MDS Service (depend on osd + mon + keys)

‒ RBD Service (depend on osd + mon + keys)

‒ iSCSI Service (depend on rbd + osd + mon + keys)



17

Basic salt module implementation.

Salt master

Salt minion module

Keyrings Mon OSD RGW MDS

Instructs

Configures
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Reusable Ceph module implementation.

Salt master

Salt minion module

Python library

Keyrings Mon OSD RGW MDS

Instructs

Wraps

Configures
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●Python-ceph-cfg

• Pure python library to configure ceph
‒ No salt dependencies

‒ Installs and runs like any other python library.

‒ 54 documented public methods

• Manages ceph entities and lifecycles.
‒ Keyrings, mon, osd, rgw, mds

“The Analyst” and I might make a YAIM inspired CLI to reuse this code.
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Python-ceph-cfg : Code structure

• Mostly “Model View Controller” design pattern.
‒ Code reuse very high

• Alternatives usually presented with “Facade pattern”
‒ init system (systemd / sysVinit)

‒ Bootstrap Keyrings (mon, admin, osd, mds, rgw)

• Started test suite based:
‒ py.test, flake8, tox
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Python-ceph-cfg : externals

• Runtime dependencies
‒ ceph.conf

‒ Currently needed to establish if node is mon node

‒ Used to default cluster UUID and cluster name if not set.

‒ Environment aware:
‒ If run inside Salt uses salt to launch processes.

‒ If run naively uses python subprocess library.

• Publicly available and open source
‒ https://github.com/oms4suse/python-ceph-cfg



22

Salt-ceph execution module overview.

• Salt-ceph
‒ https://github.com/oms4suse/sesceph

‒ Execution module for salt (Nearly complete)

‒ State module for salt (Basic so far)

‒ Simple example to build up and tear down ceph clsuters.



23

Salt-ceph execution module.

• Execution module with 54 methods
‒ Simply wraps python-ceph-cfg

‒ This is the low level salt library to configure ceph

‒ Most common functionality of ceph-deploy.

‒ All methods are idempotent.

‒ Approximately 50/50, discovery/configuration.
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Salt state modules : going salt native

• Syntactic sugar on top of execution modules
‒ Fixed return structure:

‒ Require tasks to be report operations requested.

‒ So you now which if any operations where performed.

‒ Require Success / Failure

‒ So DSL can trigger on success or failure

‒ Calling context.

‒ Require a test parameter
‒ No-op, only show steps to test operation.

‒ Will report what would have been done as separate steps.
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Salt-ceph state module 

• Only has one method currently in released branch.
‒ Quorum method.

‒ Checks if the cluster is in quorum either locally or cluster wide.

‒ Have proto typed a lot of processes.
‒ See later in talk.
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What can we do with what we have?

• Install ceph with a single text file.
‒ Assign roles to nodes

‒ Configure nodes based on roles.

• Here is an demo cluster_buildup.sls file.
‒ Sets up keyrings mon, osd, mds, rgw per node.

• Example role based setup
‒ roles for mon, osd, mds, rgw.

• Do we do a demo, or do we talk plans?

https://github.com/oms4suse/sesceph/blob/master/examples/cluster_buildup.sls
https://github.com/jan--f/salt-ceph-example/tree/master/ses


●What is planned?
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Config: Moving to a data driven model.

• All data in a central pillar.
‒ Just apply “ceph.ceph” to every node.

‒ All decision inside a single state module method.

cluster_ceph:
    ceph.ceph:
    - clusterID: b7c3ccd2-701c-4857-b347-240853038da4

Desired 
ceph 
layout
Pillar

Universal
Minion 

Command
“ceph.ceph”

Configured 
node

Queries
Pillar

Applies
Pillar
Data
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Pillar population tool

• Wizard to setup your ceph cluster
• Import tool to query an existing ceph cluster.

New 
cluster
Wizard

Desired 
ceph 
layout
Pillar

Cluster 
Inspection

Tool



30

Maintenance: Why Beacons?

• Unsafe removal of OSD 
‒ Must be restricted by failure domains (To avoid data loss).

• Nice removal of an OSD:
‒ OSD weight set to Zero (Fast).

‒ Ceph empties data from OSD (Very slow).

‒ Take OSD down (Fast).

‒ Remove OSD from cluster (Fast).

‒ Remove OSD Keys from authorized keys list (Fast).

Oh dear we now have a task that might take hours to complete!
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What are salt beacons

• Beacons monitor things 
‒ Like disk usage

• Beacons fire events based on conditionals
‒ Such as OSD is empty.

• Reactors receive events and trigger actions.
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Maintenance : salt based OSD removal.

• We want to automate OSD removal.
‒ In 3 stages:

‒ Trigger ceph to drain OSD.

‒ Set desired state in pillar, and trigger beacon on minion.

‒ Notice OSD has drained and Trigger update

‒ Beacon checks locally, and then fires events.

‒ Notice expected OSD still exists and is drained

‒ Can now remove OSD from cluster.



Questions?



Thank you.

Join the conversation,
contribute & have a lot of fun!
www.opensuse.org
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Have a Lot of Fun, and Join Us At:
www.opensuse.org
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