
Porting Ceph to FreeBSD: A look
at designing code for portability

Willem Jan Withagen
Digiware

Willem Jan Withagen Ceph Day Geneva 2016 2

Contents

● Personal introduction

– Why does life leads to Ceph

● Where do I want to go

– FreeBSD, ZFS, bhyve

● Porting

– Trivial stuff

– Simple problems

– Hard stuff

● Things to do
● Questions

Willem Jan Withagen Ceph Day Geneva 2016 3

Personal stuff

● Elektrical Engineer from TU Eindhoven

– Worked as a system architect at Philips Research
● Used Apollo Domain, HPUX, VAX, Sys3, and what not more

● Started 2nd ISP in the Netherlands in 1993

– Ran in on FreeBSD 1.0

– Sold it in 2000, april 4th to a US company

– Used FreeBSD ever since

● Startup entrepreneur in internet or embeded technology

– Most companies use Linux

● Currently co-owner of 6 companies

– Datacentre, Cloud company, Web design buro

Willem Jan Withagen Ceph Day Geneva 2016 4

Why Ceph and ZFS

● Over the years used most storage types known to IT engineers

– ApolloDomain tokenring, Hard/software raid, netapp, sun-clusters

● ZFS (2006) has been the easiest and greatest pleasure to use.

– ZFS is becoming the FS for bigger systems in FreeBSD.

– I’m using it since 2008, and it has never failed me.

● bhyve hypervisor (2011)

– Runs most other Oses, including windows x64

● So the goal:

– Running bhyve with RBD with Ceph on FreeBSD/ZFS

Willem Jan Withagen Ceph Day Geneva 2016 5

A bit about ZFS

● Copy on write FS

– Never over-write an existing block

– Filesystem is always consistent

– State atomically advances at checkpoints

– Metadata redundancy and data checksums

– Selective data compression and deduplication

– The fsync() system call is implemented by forcing a log write not by doing a
checkpoint

● HAST is a 2 node “High Available” concept, bolted onto ZFS and
CARP to create failover.

– But seriously suffers from split-brain problems. And that is not for the faint of
hart.

Willem Jan Withagen Ceph Day Geneva 2016 6

Porting to FreeBSD

● OS versions 9.3, 10.3, 11.0
– 11.0 is going to be stable around sept this year

– Code sludge has started

● Compilers
– Clang is native, 3.4(10.3), 3.7, 3.8(11.0)

– Gcc is native 4.2.1, pkgs: 4.6 upto 7

● Packaging system with 22.000 ports
– Releases are not tied to OS releases

– Packages are not always most current

– Not all packages have upstreamed their BSD patches
● Gtest/gmock

– Using about 31 packages at the top level of Ceph
● Resulting in about 500 dependancies

Willem Jan Withagen Ceph Day Geneva 2016 7

Most trivial stuff

● Compiler warnings:
– You can switch them of, but do you really want to?

./log/Log.h:18:1: warning: class 'Entry' was previously declared
as a struct [-Wmismatched-tags]
class Entry;
^
./log/Entry.h:16:8: note: previous use is here
struct Entry {
 ^
./log/Log.h:18:1: note: did you mean struct here?
class Entry;
^~~~~
Struct

● Unused variables
– Do you want to obfuscate code to prevent this, and add ifdef's around variable declaration

as well.

Willem Jan Withagen Ceph Day Geneva 2016 8

Ignoring warnings

● This actually might discover a bug

 int r = -1;
#ifdef IPTOS_CLASS_CS6
 r = ::setsockopt(sd, IPPROTO_IP, IP_TOS, &iptos, sizeof(iptos));
#endif
#if defined(SO_PRIORITY)
 // setsockopt(IPTOS_CLASS_CS6) sets the priority of the socket as 0.
 // See http://goo.gl/QWhvsD and http://goo.gl/laTbjT
 // We need to call setsockopt(SO_PRIORITY) after it.
#if defined(__linux__)
 r = ::setsockopt(sd, SOL_SOCKET, SO_PRIORITY, &prio, sizeof(prio));
#endif
#endif

Willem Jan Withagen Ceph Day Geneva 2016 9

The trivial stuff

● Missing included files

– Or different names for include files

● Mismatching defines
– #define MSG_MORE 0

– #define O_DSYNC O_SYNC

– #define ENODATA ENOATTR

● Turned out to be not so trivial.

● Mismatching system functions
– #define pthread_setname_np pthread_set_name_np

● Missing functions
– pthread_getname_np()???

You need to go fishing in kernel space to get it out, according hackers@freebsd.org.

So delayed for later on.

mailto:hackers@freebsd.org

Willem Jan Withagen Ceph Day Geneva 2016 10

The simple stuff

● Remember??
– #define ENODATA ENOATTR

● This runs in

● Don’t include boost-includes earlier:
boost/cerrno.hpp:#define ENODATA 9919

./os/filestore/chain_xattr.h
 do {
 get_raw_xattr_name(name, i, raw_name, sizeof(raw_name));
 r = sys_fremovexattr(fd, raw_name);
 } while (r != -ENODATA);
 }

Willem Jan Withagen Ceph Day Geneva 2016 11

How about CLOCK_* ??

● Different types of solutions used.

– In compat.h:
#if !defined(CLOCK_MONOTONIC_COARSE)
#if defined(CLOCK_MONOTONIC_FAST)
#define CLOCK_MONOTONIC_COARSE CLOCK_MONOTONIC_FAST
#else
#define CLOCK_MONOTONIC_COARSE CLOCK_MONOTONIC
#endif
#endif

Willem Jan Withagen Ceph Day Geneva 2016 12

POSIX stuff

● Lots of pthread stuff
● Was this an optimization, or a bug fix?

#if defined(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)
if (prioritize_write) {
 pthread_rwlockattr_t attr;
 pthread_rwlockattr_init(&attr);
 // Setting the lock kind to this avoids writer starvation as long
 // as long as any read locking is not done in a recursive fashion.
 pthread_rwlockattr_setkind_np(&attr,
 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
 pthread_rwlock_init(&L, &attr);
}
#endif

Willem Jan Withagen Ceph Day Geneva 2016 13

Semantics

● wait_until(lock, time)
● Now what if time is in the past.

● Change to

auto start = std::chrono::system_clock::now();
delay = _get_delay(c);
while (((start + delay) > std::chrono::system_clock::now()) ||
 !((max == 0) || (current == 0) || ((current + c) <= max))) {
 (*ticket)->wait_until(l, start + delay);
 delay = _get_delay(c);
}

while (true) {
 if (!((max == 0) || (current == 0) || (current + c) <= max)) {
 (*ticket)->wait(l);
 } else if (delay > std::chrono::duration<double>(0)) {
 (*ticket)->wait_for(l, delay);
 } else {
 break;
 }

Willem Jan Withagen Ceph Day Geneva 2016 14

First time right??

● Now the unittest fails:

● Termination of the throttle needs more care

 stop = true;
 for (auto &&i: gts) i.join();
 gts.clear();
 for (auto &&i: pts) i.join();
 pts.clear();

 getter_stop = true; milliwait(100);
 c.notify_all();
 for (auto &&i: gts) i.join();
 gts.clear();

 putter_stop = true; milliwait(100);
 c.notify_all();
 for (auto &&i: pts) i.join();
 pts.clear();

Willem Jan Withagen Ceph Day Geneva 2016 15

Semantics 2

extattr_list_file() returns a list of attributes
present in the requested namespace. Each list
entry consists of a single byte containing the
length of the attribute name, followed by the
attribute name. The attribute name is not
terminated by ASCII 0 (nul).

● What it does not say is that the order attributes are
returned, are in the same order they are inserted!

::memcmp(actual, buffer, buffer_size)

Does not need to be true !!

Willem Jan Withagen Ceph Day Geneva 2016 16

Testing ??

Thank you for such a nice set of tests !!!

Willem Jan Withagen Ceph Day Geneva 2016 17

Testing ???!!!!

● Make check.

– Unittests
● Great help to assert that most things work

– Debug reporting is minimal, little help if things go wrong.
● Some are really slow, doing benchmarking??

– Env setting to disable?

– Scripts
● No description of what the test does.
● Small ones, big ones in *.sh(bash), *.py, cython, nosetests
● Not always matching up with autoconfig (RBD)
● Lots of other tools used: grep, sed, [], perl
● But also convert and jq, jq is used only in 1 script...

Willem Jan Withagen Ceph Day Geneva 2016 18

Running complex tests

● Why would I need 2 signals to reminate ceph-
{osd,mon}??

– And osd-markdown.sh kills the it on the first hit?

● I'd like to keep the data and logs for post-mortum
analysis, if things go bad.

● If OSDs die, we still continue trying to test rados
and rbd access.
– That blocks the scripts and then takes forever to

complete

Willem Jan Withagen Ceph Day Geneva 2016 19

Number of changes

Total ifdef's
CEPH_*
HAVE_*
cplusplus

1867
724
185
127

Not counting
Rocksdb and
Gtest/Gmock

__linux__
OS_LINUX

74
104 Used for Rocksdb,

gtest

__FreeBSD__
OS_FREEBSD

61
19

DARWIN
__APPLE__

37
14

AIX
__sun

9
10

Compat.h has 115 lines, including header

Willem Jan Withagen Ceph Day Geneva 2016 20

Recommendations

● All “trivial” OS mismatches should go into:
– “include/compat.h”

● And should be included first or at least before any other
boost includes

● Conditionalize linux-isms

– And generate warnings (or errors) during running if
not fixed for other Oses
● lsb_release, hdparm, gpart, …
● And an indicator of sorts would be nice

●

Willem Jan Withagen Ceph Day Geneva 2016 21

Recommendations

● Scripts should us as much std-shell as possible

– Prevent serious bash-ism if you can

– Don't use sed to replace the last (empty) line with
new data.
● A HERE-file works way much more ledgible.

● Cleanup after a test: tmp-files, *logs, cores….

– Perhaps are cores after GTEST_DEATH a typical
FreeBSD problem.

Willem Jan Withagen Ceph Day Geneva 2016 22

Things to do…...

● Teuthology integration??
● ZFS integration
● RBD in userspace for bhyve
● AIO compatibility layer for BlueStore
● Ceph-deploy

● More urgent things?

Willem Jan Withagen Ceph Day Geneva 2016 23

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

