


Reinvestigation of the electron fraction and electron Fermi energy of neutron star

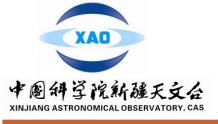
Na Wang & Zhi-Fu Gao

Xinjiang Astronomical Observatory, CAS, China

12 May. 2017

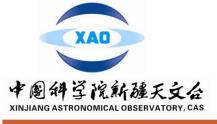







## > A general solution of electron

## Fermi energy


Numerical simulations

## **Conclusions**





- The electron fraction and the Fermi energy of relativistic electrons in circumstances of neutron stars (NSs) are two important physical parameters influencing directly weakinteraction processes including MURCA reactions, electron capture and so on
- This influence will change intrinsic equations of states , interior structure and heat evolution of a NS, and even affect whole properties of the star



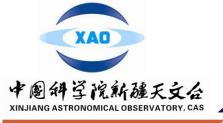
## Deduction

> Defining  $E_F(e)$  for relativistic electrons:  $E_F(e) \equiv [p_F^2(e)c^2 + m_e^2c^4]^{1/2}.(1)$ 

> Micro-state number in the weakmagnetic field approximation:

$$N_{pha} = \frac{g}{h^2} \int_0^{p_F(e)} 4\pi p^2 dp = \frac{8\pi}{3h^3} p_F^3(e).(2)$$

Introducing dimensionless momentum


$$x_i = p_F(i) / m_i c \quad (i = e, n, p)$$

> According to Pauli's exclusion principle, electron number density is equal to its energy state density

> By defining the mass of a baryon 
$$m_B$$

$$n_e = N_{pha} = \frac{1}{3\pi^2 \lambda_e^3} x_e^3,$$
 (3)

$$m_B \equiv \frac{1}{n} \sum_i n_i m_i = \frac{\sum_i n_i m_i}{\sum_i n_i A_i}, \qquad (4),$$



≻Matter density can be expressed as:

**Combining Eq.(4) and Eq.(5), we get:** 

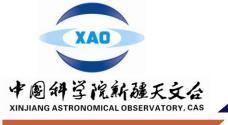
> Inserting  $m_B = 1.66057 \times 10^{-24}$  g and  $\lambda_e = \frac{\hbar}{m_e c} = 3.8614 \times 10^{-11}$  cm into Eq.(6), we get:

> Utilizing  $\mu_e = \frac{m_B}{m_u Y_e} = \frac{1}{Y_e}$ , Eq.(5) is rewritten as :

Combining Eq.(1) with Eqs. (7)

$$\rho = n_B m_B = \frac{n_e m_B}{Y_e}, \qquad (5),$$

$$x_{e} = \left(\frac{3\pi^{2}\lambda_{e}^{3}}{m_{u}}\rho Y_{e}\right)^{1/3}$$
(6)

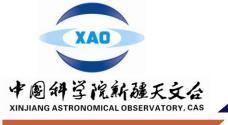

$$x_e = 1.0088 \times 10^{-2} (Y_e \rho)^{1/3}, (7)$$

$$\rho = \mu_e m_u n_e = 0.97395 \times 10^6 \,\mu_e x_e^3$$

$$= 0.97395 \times 10^{6} \frac{x_{e}^{3}}{Y_{e}} \text{g} \cdot \text{cm}^{-3}(8)$$

 $E_F(e) = [1 + 1.018 \times 10^{-4} (\rho Y_e)^{2/3}]^{1/2} \times 0.511 \text{MeV.}(9)$ 

and (8), we get

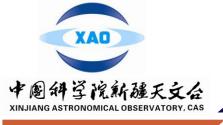



> From Shapiro \& Teukolsky (1983), we get the electron fraction in the outer core region  $(\rho \sim 0.5\rho_0 - 2.0\rho_0)$ 

$$Y_{e} = \frac{n_{e}}{n_{p} + n_{n}} \approx \frac{n_{e}}{n_{n}} \approx 0.005647(\frac{\rho}{\rho_{0}}), (10)$$

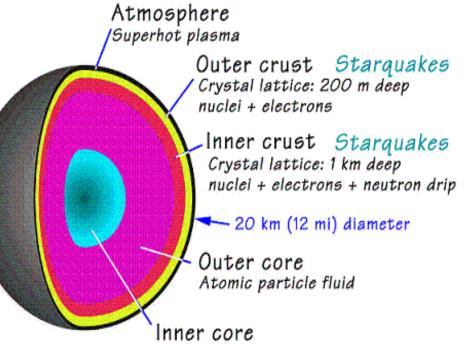
> Inserting Eq.(10) into Eq.(9), we get

$$E_F(e) = 60 \times (\frac{\rho}{\rho_0})^{2/3} \text{ MeV} (11)$$

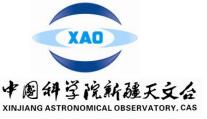



#### **Inserting Eq.(10) into Eq.(11), we get**

$$E_{\rm F}(e) = 60 \times \left(\frac{\rho}{\rho_0}\right)^{\frac{1}{3}} \left(\frac{\rho}{\rho_0}\right)^{\frac{1}{3}} = 60 \times \left(\frac{\rho}{\rho_0}\right)^{\frac{1}{3}} \left(\frac{\rho_0 Y_e}{0.005647}\right)^{\frac{1}{3}}$$
$$= 60 \times \left(\frac{\rho}{\rho_0}\right)^{\frac{1}{3}} \left(\frac{Y_e}{0.005647}\right)^{\frac{1}{3}} ({\rm MeV}).$$
(12)


#### **Application conditions:**

$$1.B << B^* = 4.4 \times 10^{13} \text{ G}$$
  $2. \rho \ge 10^7 \text{ g} \cdot \text{cm}^{-3}$ 

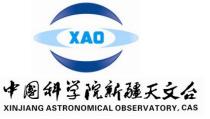



## Numerical

Using reliable equations of state (EOSs) and numerical simulations, we will get oneto-one relationship between the electron fraction and matter density at different depths in a NS, then obtain the value of Fermi energy of electrons given any density.



Inner core Solid block of subatomic particles?




# **Numerical simulation (I)**

The studies of nucleon matter using Argonne v18 two-nucleon interaction (Av18) and Urbana IX three nucleon interaction (UIX) indicated that there is a possibility of a transition to a neutral pion condensed phase for both symmetric and pure neutron matter;

- Akmal, Pandharipande, & Ravenhall(1998) (APR98) investigated the properties of dense nucleon matter and the structure of NSs, and provided an excellent fit to all of the nucleon-nucleon scattering data in the Nijmegen data.
- In APR98, the authors not only considered thenon-relativistic calculations with Av18 and Av18+UIX models for nuclear forces, but also described the relativistic boost interaction model (denoted as δv) with and without threenucleon interaction (UIX\*).
- The difference between these two models lies in that whether the effect of threenucleon interaction (TNI) is considered. These two models can be regarded as more realistic models.

(Akmal, Pandharipande, \& Ravenhall 1998)

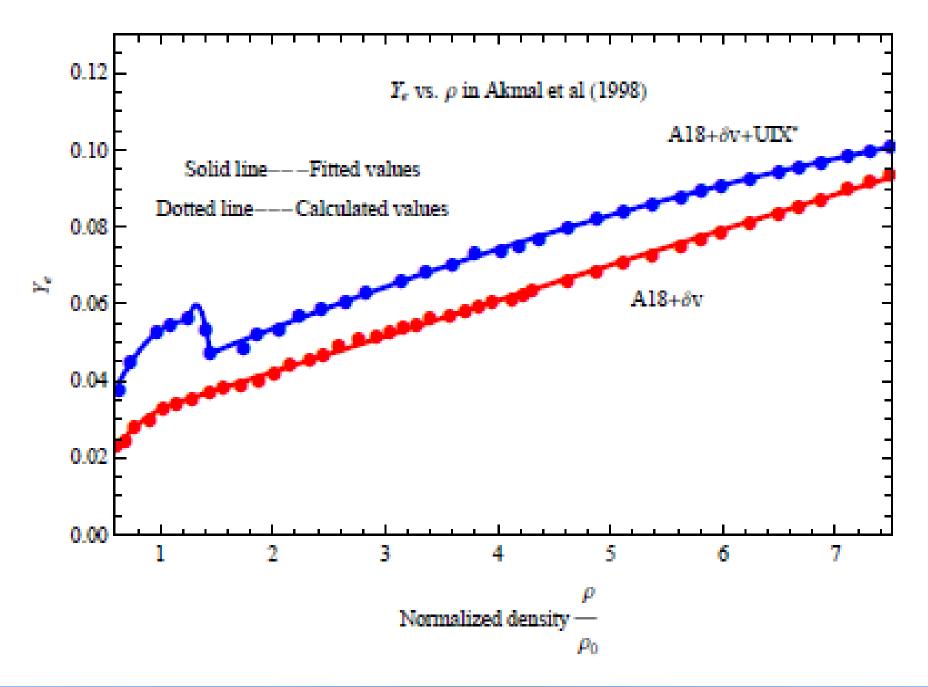


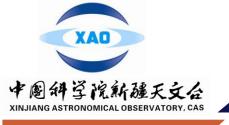
According to the APR98, the effective interactions have same form

$$H = \left[\frac{\hbar^2}{(2m)} + (p_3 + (1 - Y_p)p_5)\rho e^{-p_4\rho}\right]\tau_n + \left(\frac{\hbar^2}{(2m)} + (p_3 + Y_pp_5)\rho e^{-p_4\rho}\right)\tau_p + g(\rho, Y_p = 0.5)\left(1 - (1 - 2Y_p)^2\right) + g(\rho, Y_p = 0)(1 - 2Y_p)^2,$$

where  $\rho = \rho_n + \rho_p$  at zero temperature, and  $\tau_p = \frac{3}{5} (3\pi^2 \rho)^{\frac{2}{3}} Y_p^{\frac{5}{3}}, \tau_n = \frac{3}{5} (3\pi^2 \rho)^{\frac{2}{3}} (1 - Y_p)^{\frac{5}{3}}.$ 

Table 1 Parameter values for  $Av18 + \delta v + UIX^*$  and  $Av18 + \delta v$  models.


| model                 | $p_1$    | $p_2$    | $p_6$    | $p_7$    | $p_8$    | $p_9$    | $p_{10}$ | $p_{11}$ | $p_{12}$ | $p_{13}$ |
|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| $Av18+\delta v+UIX^*$ | 337.2    | -382.0   | -19.1    | 214.6    | -384.0   | 6.4      | 69.0     | -33.0    | 0.35     | 0        |
| A18+ $\delta v$       | 281.0    | -151.1   | -10.6    | 210.1    | -158.0   | 5.88     | 58.8     | -15.0    | -0.2     | -0.9     |
| model                 | $p_{14}$ | $p_{15}$ | $p_{16}$ | $p_{17}$ | $p_{18}$ | $p_{19}$ | $p_{20}$ | $p_{21}$ |          |          |
| $Av18+\delta v+UIX^*$ | 0        | 287.0    | -1.54    | 175.0    | -1.45    | 0.32     | 0.195    | 0        |          |          |



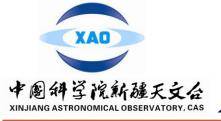

**Table 2** Partial values of  $n_B$ ,  $\rho$ ,  $Y_e$  and  $E_F(e)$  for  $Av18 + \delta v + UIX^*$  and  $Av18 + \delta v$  models.

|                   | $Av18 + \delta v$        |       |                |                          |                   |                        |       |                |                          |
|-------------------|--------------------------|-------|----------------|--------------------------|-------------------|------------------------|-------|----------------|--------------------------|
| $n_B$             | Matter-density           | $Y_e$ | $E_{\rm F}(e)$ | $E_{\rm F}^{\dagger}(e)$ | $n_B$             | Matter-density         | $Y_e$ | $E_{\rm F}(e)$ | $E_{\rm F}^{\dagger}(e)$ |
| $({\rm fm}^{-3})$ | $(g  cm^{-3})$           | (%)   | (MeV)          | (MeV)                    | $({\rm fm}^{-3})$ | $(\mathrm{gcm^{-3}})$  | (%)   | (MeV)          | (MeV)                    |
| 0.10              | $1.661 \times 10^{14}$   | 2.395 | 81.60          | 81.32                    | 0.67              | $1.113 \times 10^{15}$ | 6.237 | 211.64         | 211.96                   |
| 0.17              | $2.178 \times 10^{14}$   | 2.789 | 102.45         | 102.19                   | 0.74              | $1.229 \times 10^{15}$ | 6.620 | 223.15         | 223.33                   |
| 0.23              | $3.819 	imes 10^{14}$    | 3.683 | 124.33         | 124.03                   | 0.82              | $1.362 \times 10^{15}$ | 7.068 | 236.02         | 236.32                   |
| 0.30              | $4.982 \times 10^{14}$   | 4.165 | 141.52         | 141.02                   | 0.90              | $1.495 \times 10^{15}$ | 7.528 | 248.63         | 248.76                   |
| 0.37              | $6.144 \times 10^{14}$   | 4.590 | 156.76         | 156.76                   | 0.96              | $1.594 \times 10^{15}$ | 7.881 | 257.95         | 258.21                   |
| 0.41              | $6.808 	imes 10^{14}$    | 4.820 | 164.88         | 164.56                   | 1.00              | $1.661 \times 10^{15}$ | 8.121 | 264.11         | 264.43                   |
| 0.45              | $7.473 	imes 10^{14}$    | 5.043 | 172.67         | 172.36                   | 1.04              | $1.727 \times 10^{15}$ | 8.365 | 270.23         | 270.65                   |
| 0.49              | $8.137	imes10^{14}$      | 5.262 | 180.17         | 180.10                   | 1.07              | $1.777 \times 10^{15}$ | 8.552 | 274.23         | 274.54                   |
| 0.57              | $9.465 	imes 10^{14}$    | 5.695 | 194.55         | 194.67                   | 1.14              | $1.893	imes10^{15}$    | 8.991 | 285.42         | 285.56                   |
| 0.64              | $1.063\times10^{15}$     | 6.073 | 206.59         | 206.65                   | 1.20              | $1.993\times10^{15}$   | 9.378 | 294.45         | 294.64                   |
|                   | $A18 + \delta v + UIX^*$ |       |                |                          |                   |                        |       |                |                          |
| 0.10              | $1.661 \times 10^{14}$   | 3.707 | 94.38          | 94.09                    | 0.67              | $1.113 \times 10^{15}$ | 7.633 | 226.38         | 226.65                   |
| 0.17              | $2.178 \times 10^{14}$   | 4.701 | 121.94         | 121.38                   | 0.74              | $1.229 \times 10^{15}$ | 8.001 | 237.71         | 237.93                   |
| 0.23              | $3.819	imes10^{14}$      | 4.791 | 135.72         | 135.25                   | 0.82              | $1.362 \times 10^{15}$ | 8.404 | 250.04         | 250.21                   |
| 0.30              | $4.982 \times 10^{14}$   | 5.274 | 153.11         | 152.81                   | 0.90              | $1.495 \times 10^{15}$ | 8.789 | 261.99         | 262.23                   |
| 0.37              | $6.144 	imes 10^{14}$    | 5.796 | 169.44         | 169.17                   | 0.96              | $1.594 \times 10^{15}$ | 9.068 | 270.29         | 270.65                   |
| 0.41              | $6.808 	imes 10^{14}$    | 6.073 | 178.09         | 177.88                   | 1.00              | $1.661 \times 10^{15}$ | 9.251 | 275.84         | 275.99                   |
| 0.45              | $7.473\times10^{14}$     | 6.385 | 186.33         | 186.01                   | 1.04              | $1.727 \times 10^{15}$ | 9.429 | 280.26         | 280.54                   |
| 0.49              | $8.137\times10^{14}$     | 6.592 | 194.23         | 194.03                   | 1.07              | $1.777 \times 10^{15}$ | 9.563 | 285.26         | 285.76                   |
| 0.57              | $9.465\times10^{14}$     | 7.073 | 209.12         | 209.37                   | 1.14              | $1.893\times10^{15}$   | 9.864 | 294.37         | 294.57                   |
| 0.64              | $1.063\times10^{15}$     | 7.468 | 221.54         | 221.33                   | 1.20              | $1.993\times10^{15}$   | 10.12 | 301.98         | 302.46                   |





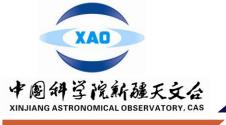



By performing 2nd order polynomial fitting, we obtain

$$Y_e = -0.01232 + 0.1184 \,\varrho - 0.0572 \,\varrho^2,$$
  

$$Y_e = -1.4321 + 2.3246 \,\varrho - 0.9085 \,\varrho^2,$$
  

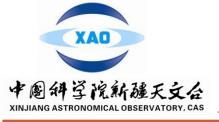
$$Y_e = 0.0291 + 0.0146 \,\varrho - 5.68 \times 10^{-4} \,\varrho^2,$$


for  $\rho \sim 0.593 - 1.190 (\rho \sim (1.661 \times 10^{14} - 3.331 \times 10^{14}) \text{g cm}^{-3}), \rho \sim 1.190 - 1.366 (\rho \sim (3.331 \times 10^{14} - 3.826 \times 10^{14}) \text{g cm}^{-3}), \text{ and } \rho \sim 1.366 - 7.118 (\rho \sim (3.826 \times 10^{14} - 1.993 \times 10^{15}) \text{g cm}^{-3}), \text{ respectively, where } n_m ax = 2 \text{ is assumed. When at the density-node of } \rho = 1.190, \text{ the "jump" of the electron fraction is 0.0007, corresponding to a relative variation <math>|\Delta Y_e/Y_e| \sim 1.4\%$ , while at the point  $\rho = 1.366$ , the "jump" is about 0.0006, corresponding to a relative variation of 1.2%.



As to the  $Av18+\delta v$  model, the data of  $Y_e$  are divided into two groups according to their change trend. In the same way, we obtain

$$Y_e = -0.0105 + 0.07487 \,\varrho - 0.03053 \,\varrho^2,$$
  
$$Y_e = 0.0236 + 0.00991 \,\varrho - 2.317 \times 10^{-5} \,\varrho^2$$


for  $\rho \sim 0.593 - 0.984(\rho \sim (1.661 \times 10^{14} - 2.755 \times 10^{14}) \text{g cm}^{-3})$ , and  $\rho \sim 0.984 - 7.118(\rho \sim (2.755 \times 10^{14} - 1.993 \times 10^{15}) \text{g cm}^{-3})$ , respectively. When at density-node of  $\rho = 0.984$ , the change  $|\Delta Y_e| = 0.0006$ , corresponding to a relative variation of 2.1%, which ensures the continuity of two analytical expressions. The differences of  $Y_e$  between the data and the fits are typically  $\sim 10^{-3}$  or better, the relative differences are s-maller than 1%, and the maximum error is about 0.004 also at the low density end.



## Relativistic mean field (RMF)

- □ The relativistic-mean-field (RMF) theory, which has become standard method to study nuclear matter and finite-nuclei properties.
- According to RMF models, the strong interaction between baryons is mediated by the exchange of isoscalar scalar and vector mesons  $\sigma$ ,  $\omega$ , isovector vector meson  $\rho$ .
- There are two additional strange mesons namely isoscalar scalar σ\* and vector φ mesons considered by some authors (e.g., Schaffner & Mishustin 1996; Xu et al. 2012).

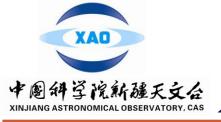
We adopt the five-mesons-model in RMF, the lagrangian has the



### The lagrangian of five-mesons-model

$$L = \sum_{B} \overline{\psi}_{B} [i\gamma_{\mu}\partial^{\mu} - (m_{B} - g_{\sigma B}\sigma - g_{\sigma^{*}B\sigma^{*}})$$

$$-g_{\rho B}\gamma_{\mu}\tau \cdot \rho^{\mu} - g_{\omega B}\gamma_{\mu}\omega^{\mu} - g_{\phi B}\gamma_{\mu}\phi^{\mu}]\psi_{B}$$


$$+\frac{1}{2}(\partial_{\mu}\sigma\partial^{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}) + \frac{1}{2}(\partial_{\nu}\sigma^{*}\partial^{\nu}\sigma^{*})$$

$$-m_{\sigma^{*}}^{2}\sigma^{*2}) - \frac{1}{4}W^{\mu\nu}W_{\mu\nu} - \frac{1}{4}R^{\mu\nu}R_{\mu\nu}$$

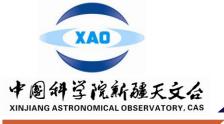
$$+\frac{1}{2}m_{\rho}^{2}\rho_{\mu}\rho^{\mu} - \frac{1}{4}P^{\mu\nu}P_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu}$$

$$-\frac{1}{3}a\sigma^{3} - \frac{1}{4}b\sigma^{4} + \frac{1}{2}m_{\phi}^{2}\phi_{\mu}\phi^{\mu}$$

where  $W_{\mu\nu} = \partial_{\mu}\omega_{\nu} - \partial_{\nu}\omega_{\mu}$ ,  $R_{\mu\nu} = \partial_{\mu}\rho_{\nu} - \partial_{\nu}\rho_{\mu}$ and  $P_{\mu\nu} = \partial_{\mu}\phi_{\nu} - \partial_{\nu}\phi_{\mu}$  denote the field tensors of  $\omega$ ,  $\rho$  and  $\phi$  mesons, respectively.



#### The meson field equations in NSs are as follows

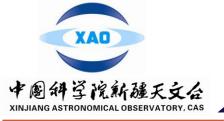

$$\sum_{B} g_{\sigma B} \rho_{SB} = m_{\sigma}^{2} \sigma + a \sigma^{2} + b \sigma^{3},$$

$$\sum_{B} g_{\omega B} \rho_{B} = m_{\omega}^{2} \omega_{0} + c_{3} \omega_{0}^{3},$$

$$\sum_{B} g_{\rho B} \rho_{B} I_{3B} = m_{\rho}^{2} \rho_{0},$$

$$\sum_{B} g_{\sigma^{*}B} \rho_{SB} = m_{\sigma^{*}}^{2} \sigma^{*},$$

$$\sum_{B} g_{\phi B} \rho_{B} = m_{\phi}^{2} \phi_{0},$$




#### At T=0 the lepton chemical potentials are expressed by

$$\mu_l = \sqrt{k_F^{l^2} + m_l^2}, \quad \text{(fm}^{-1})$$

The charge neutrality condition is given by

$$\sum_{B} q_B \rho_B - n_e - n_\mu = 0,$$



#### By solving the coupled equations self-consistently at a given density, we get the total energy state density and total pressure

$$\begin{split} \varepsilon &= \sum_{B} \frac{1}{\pi^2} \int_0^{k_F^B} \sqrt{k^2 + m_B^{*2}} k^2 dk + \frac{1}{2} m_\sigma^2 \sigma^2 + \frac{1}{3} g_2 \sigma^3 + \frac{1}{4} g_3 \sigma^4 \\ &+ \frac{1}{2} m_\omega^2 \omega^2 + \frac{3}{4} c_3 \omega^4 + \frac{1}{2} m_\rho^2 \rho^2 + \sum_l \frac{1}{\pi^2} \int_0^{k_F^l} \sqrt{k^2 + m_l^2} k^2 dk, \\ P &= \frac{1}{3} \sum_{B} \frac{1}{\pi^2} \int_0^{k_F^B} \frac{k^4 dk}{\sqrt{k^2 + m_B^{*2}}} - \frac{1}{2} m_\sigma^2 \sigma^2 - \frac{1}{3} g_2 \sigma^3 - \frac{1}{4} g_3 \sigma^4 \\ &+ \frac{1}{2} m_\omega^2 \omega^2 + \frac{1}{4} c_3 \omega^4 + \frac{1}{2} m_\rho^2 \rho^2 + \frac{1}{3} \sum_l \frac{1}{\pi^2} \int_0^{k_F^l} \frac{k^4 dk}{\sqrt{k^2 + m_l^2}}. \end{split}$$



Table 7 Saturation properties, meson-nucleon couplings and self-coupling constants of three RMF models.

| Model                | $ ho_0$         | $E_0$          | $K_0$        | $m^*$     | K'              | J                  | $L_0$              | $K^0_{sym}$     | $Q^0_{sym}$     | $K^0_{\tau,V}$  |
|----------------------|-----------------|----------------|--------------|-----------|-----------------|--------------------|--------------------|-----------------|-----------------|-----------------|
|                      | ${\rm fm}^{-3}$ | $\mathrm{MeV}$ | MeV          |           | MeV             | MeV                | MeV                | MeV             | MeV             | MeV             |
| NL3                  | 0.148           | -16.24         | 271.53       | 0.60      | -202.91         | 37,40              | 118.53             | 100.88          | 181.31          | -698.85         |
| TMA                  | 0.147           | -16.02         | 318.15       | 0.635     | 572.12          | 30.66              | 90.14              | 10.75           | -108.74         | -367.99         |
| GM1(SU3)             | 0.153           | -16.33         | 300.50       | 0.70      | 215.66          | 32.52              | 94.02              | 17.98           | 25.01           | -478.64         |
| Model                | $m_N$           | $m_{\sigma}$   | $m_{\omega}$ | $m_{ ho}$ | $g_{\sigma N}$  | $g_{\omega N}$     | $g_{ ho N}$        | a               | b               | $c_3$           |
|                      | MeV             | $\mathrm{MeV}$ | MeV          | MeV       | ${\rm fm}^{-1}$ | $\mathrm{fm}^{-1}$ | $\mathrm{fm}^{-1}$ | ${\rm fm}^{-1}$ | ${\rm fm}^{-1}$ | ${\rm fm}^{-1}$ |
| NL3                  | 939.0           | 508.194        | 782.50       | 763.0     | 10.217          | 12.868             | 4.474              | -10.431         | -28.885         | 0               |
| TMA                  | 939.0           | 519.151        | 781.95       | 768.1     | 10.055          | 12.842             | 3.800              | -0.328          | 38.862          | 151.590         |
| $GM1(SU3)^{\dagger}$ | 938.0           | 550            | 783.0        | 770.0     | 4.10            | 10.26              | 4.10               | 12.28           | -8.98           | 0               |

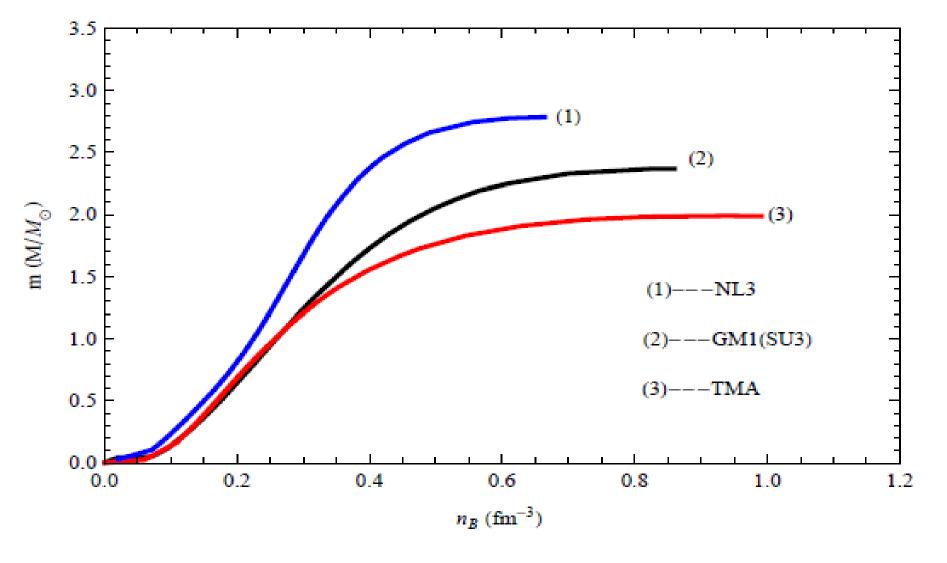
Note: <sup>†</sup>. For the GM1(SU3) parameter set, the meson masses  $m_{\sigma*} = 975.0 \text{ MeV}$ , and  $m_{\phi*} = 1020.0 \text{ MeV}$ , the meson-hyperon couplings  $g_{\sigma\Lambda} = 6.170 \text{ fm}^{-1}$ ,  $g_{\sigma\Xi} = 1020.0 \text{ fm}^{-1}$ ,  $g_{\sigma*\Lambda} = 5.412 \text{ fm}^{-1}$ , and  $g_{\sigma*\Lambda} = 11.516 \text{ fm}^{-1}$ .



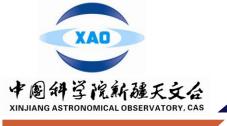
**Table 8** Partial calculations of  $n_B$ ,  $n_e$ ,  $Y_e$  and  $E_F(e)$  for TMA parameter set.

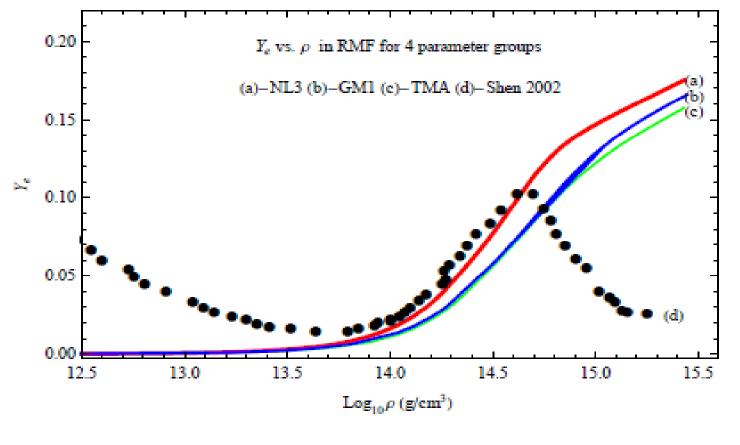
| $n_B$                  | $n_e$                   |           | $E_F(e)$ | ε                      | P                      |
|------------------------|-------------------------|-----------|----------|------------------------|------------------------|
| $({\rm fm}^{-3})$      | $(\mathrm{cm}^{-3})$    | $Y_e$     | (MeV)    | $({\rm fm}^{-4})$      | $({\rm fm}^{-4})$      |
|                        |                         |           |          |                        |                        |
| $3.808 \times 10^{-6}$ | 0                       | 0         | 0.04921  | $1.779 \times 10^{-5}$ | $3.41 \times 10^{-10}$ |
| $1.312 \times 10^{-5}$ | 0                       | 0         | 0.11482  | $6.202 \times 10^{-5}$ | $2.64 \times 10^{-9}$  |
| 0.00106                | $6.202 \times 10^{31}$  | 0.0000583 | 2.4698   | 0.0050                 | $2.708 \times 10^{-6}$ |
| 0.0434                 | $3.3639 \times 10^{35}$ | 0.00775   | 42.459   | 0.2073                 | $2.097{	imes}10^{-4}$  |
| 0.1106                 | $3.5155 \times 10^{36}$ | 0.03179   | 92.825   | 0.53086                | 0.00767                |
| 0.1442                 | $6.6243 \times 10^{36}$ | 0.04594   | 114.65   | 0.69582                | 0.01835                |
| 0.1666                 | $9.0084 \times 10^{36}$ | 0.05407   | 127.02   | 0.80746                | 0.02822                |
| 0.2786                 | $2.3829 \times 10^{37}$ | 0.08553   | 175.67   | 1.3899                 | 0.11426                |
| 0.3066                 | $2.8026 \times 10^{37}$ | 0.09141   | 185.43   | 1.5425                 | 0.14544                |
| 0.3696                 | $3.7847 \times 10^{37}$ | 0.1024    | 204.96   | 1.8971                 | 0.22919                |
| 0.4326                 | $4.7996 \times 10^{37}$ | 0.11095   | 221.85   | 2.2675                 | 0.33046                |
| 0.5852                 | $7.327 \times 10^{37}$  | 0.12521   | 255.45   | 3.2303                 | 0.63688                |
| 0.6286                 | $8.0579 \times 10^{37}$ | 0.12819   | 263.67   | 3.5207                 | 0.73716                |
| 0.6846                 | $9.0078 \times 10^{37}$ | 0.13158   | 273.65   | 3.9058                 | 0.87369                |
| 0.7826                 | $1.0689 \times 10^{38}$ | 0.13658   | 289.71   | 4.6073                 | 1.1297                 |
| 0.8764                 | $1.2319 \times 10^{38}$ | 0.14057   | 303.75   | 5.3099                 | 1.3921                 |
| 0.9436                 | $1.3501 \times 10^{38}$ | 0.14308   | 313.17   | 5.8311                 | 1.5892                 |
| 1.0528                 | $1.5444 \times 10^{38}$ | 0.14669   | 327.52   | 6.7083                 | 1.9239                 |
| 1.1704                 | $1.7567 \times 10^{38}$ | 0.15009   | 341.89   | 7.6928                 | 2.3017                 |
| 1.2110                 | $1.8307 \times 10^{38}$ | 0.15117   | 346.63   | 8.0418                 | 2.4360                 |
| 1.2278                 | $1.8614 \times 10^{38}$ | 0.15161   | 348.56   | 8.1875                 | 2.4921                 |
| 1.2614                 | $1.9231 \times 10^{38}$ | 0.15246   | 352.37   | 8.4813                 | 2.6053                 |
| 1.2950                 | $1.9850 \times 10^{38}$ | 0.15328   | 356.11   | 8.7781                 | 2.7196                 |
| 1.3202                 | $2.0315 \times 10^{38}$ | 0.15388   | 358.87   | 9.0027                 | 2.8062                 |
| 1.3370                 | $2.0627 \times 10^{38}$ | 0.15427   | 360.69   | 9.1533                 | 2.8642                 |
| 1.3538                 | $2.0938 \times 10^{38}$ | 0.15466   | 362.50   | 9.3047                 | 2.9225                 |
| 1.400                  | $2.1798 \times 10^{38}$ | 0.15570   | 367.40   | 9.7247                 | 3.0844                 |

|                   |                        |           |          | -                 | -                      |        |                |
|-------------------|------------------------|-----------|----------|-------------------|------------------------|--------|----------------|
| $n_B$             | $n_e$                  |           | $E_F(e)$ | $n_B$             | $n_e$                  |        | $E_{\rm F}(e)$ |
| $({\rm fm}^{-3})$ | $(\mathrm{cm}^{-3})$   | $Y_e$     | (MeV)    | $({\rm fm}^{-3})$ | $(\mathrm{cm}^{-3})$   | $Y_e$  | (MeV)          |
| 0.00153           | $1.526 \times 10^{33}$ | 0.0000997 | 3.30     | 0.42993           | $4.962 \times 10^{38}$ | 0.1154 | 224.32         |
| 0.0153            | $3.026{	imes}10^{35}$  | 0.00198   | 19.03    | 0.49725           | $6.145{	imes}10^{38}$  | 0.1236 | 240.90         |
| 0.02601           | $1.079 \times 10^{36}$ | 0.00415   | 29.07    | 0.56763           | $7.395 \times 10^{38}$ | 0.1303 | 256.23         |
| 0.03519           | $2.248 \times 10^{36}$ | 0.00639   | 37.12    | 0.60894           | $8.132 \times 10^{38}$ | 0.1335 | 264.48         |
| 0.0459            | $4.306 \times 10^{36}$ | 0.00938   | 46.10    | 0.65943           | $9.037 \times 10^{38}$ | 0.1370 | 273.94         |
| 0.05967           | $8.201 \times 10^{36}$ | 0.01374   | 57.14    | 0.70074           | $9.779 \times 10^{38}$ | 0.1396 | 281.25         |
| 0.07191           | $1.297 \times 10^{37}$ | 0.01804   | 66.58    | 0.78029           | $1.122 \times 10^{39}$ | 0.1438 | 294.42         |
| 0.09486           | $2.553 \times 10^{37}$ | 0.02691   | 83.44    | 0.85986           | $1.267{	imes}10^{39}$  | 0.1473 | 306.60         |
| 0.10404           | $3.194 \times 10^{37}$ | 0.0307    | 89.91    | 0.86139           | $1.270 \times 10^{39}$ | 0.1474 | 306.82         |
| 0.11016           | $3.667 \times 10^{37}$ | 0.0333    | 94.14    | 0.88281           | $1.309 \times 10^{39}$ | 0.1483 | 309.95         |
| 0.13005           | $5.450 	imes 10^{37}$  | 0.0419    | 107.43   | 0.91035           | $1.360 \times 10^{39}$ | 0.1493 | 313.90         |
| 0.14076           | $6.492{	imes}10^{37}$  | 0.04612   | 113.88   | 0.95778           | $1.447{	imes}10^{39}$  | 0.1511 | 320.50         |
| 0.17289           | $9.952 \times 10^{37}$ | 0.05756   | 131.31   | 1.0557            | $1.629 \times 10^{39}$ | 0.1543 | 333.42         |
| 0.18513           | $1.140 \times 10^{38}$ | 0.0616    | 137.41   | 1.1047            | $1.721 \times 10^{39}$ | 0.1558 | 339.57         |
| 0.22491           | $1.657{	imes}10^{38}$  | 0.07366   | 155.62   | 1.2378            | $1.973 \times 10^{39}$ | 0.1594 | 355.41         |
| 0.2754            | $2.393{	imes}10^{38}$  | 0.08688   | 175.91   | 1.3235            | $2.138{	imes}10^{39}$  | 0.1615 | 365.01         |
| 0.34272           | $3.471 \times 10^{38}$ | 0.10129   | 199.14   | 1.3908            | $2.268{	imes}10^{39}$  | 0.1631 | 372.26         |
| 0.39933           | $4.431{	imes}10^{38}$  | 0.11097   | 216.02   | 1.530             | $2.539{	imes}10^{39}$  | 0.1660 | 386.56         |

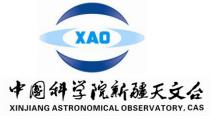

Table 9 Partial calculations of  $n_B$ ,  $n_e$ ,  $Y_e$  and  $E_F(e)$  for GM1(SU3) parameter set.

| Idole II Id            |                         | $10 \text{ or } n_B, n_e$ | , 16 0104 1 | EF(c) for $itE$       | o parameter bet.        |
|------------------------|-------------------------|---------------------------|-------------|-----------------------|-------------------------|
| $n_B$                  | $n_e$                   |                           | $E_F(e)$    | ε                     | P                       |
| $({\rm fm}^{-3})$      | $(\mathrm{cm}^{-3})$    | $Y_e$                     | (MeV)       | $({\rm fm}^{-4})$     | $({\rm fm}^{-4})$       |
|                        |                         | ·                         |             |                       |                         |
| $1.48 \times 10^{-8}$  | 0                       | 0                         | 0.001       | $7.55{\times}10^{-8}$ | $3.606 \times 10^{-14}$ |
| $1.036 \times 10^{-7}$ | 0                       | 0                         | 0.0039      | $4.23 \times 10^{-7}$ | $6.984 \times 10^{-13}$ |
| $7.400 \times 10^{-5}$ | 0                       | 0                         | 0.38889     | 0.000352              | $4.204 \times 10^{-8}$  |
| $3.108 \times 10^{-4}$ | $3.7149 \times 10^{30}$ | $1.2 \times 10^{-5}$      | 1.0747      | 0.0014                | $3.901 \times 10^{-7}$  |
| 0.00132                | $1.2348 \times 10^{32}$ | $9.4 \times 10^{-5}$      | 3.0825      | 0.00627               | $3.125 \times 10^{-6}$  |
| 0.00592                | $3.9553 \times 10^{33}$ | $6.7 \times 10^{-4}$      | 9.6678      | 0.02822               | $1.841 \times 10^{-5}$  |
| 0.04292                | $4.8659 	imes 10^{35}$  | 0.01134                   | 48.018      | 0.2050                | $5.987 \times 10^{-4}$  |
| 0.07104                | $1.7196 \times 10^{36}$ | 0.0242                    | 73.138      | 0.34024               | 0.00285                 |
| 0.10064                | $4.0873 \times 10^{36}$ | 0.04061                   | 97.607      | 0.48403               | 0.00795                 |
| 0.14208                | $8.9505 	imes 10^{36}$  | 0.06300                   | 126.75      | 0.68868               | 0.02053                 |
| 0.17168                | $1.3163 \times 10^{37}$ | 0.07667                   | 144.14      | 0.83771               | 0.03452                 |
| 0.20276                | $1.8191 \times 10^{37}$ | 0.08972                   | 160.55      | 0.99734               | 0.05631                 |
| 0.23088                | $2.3149 \times 10^{37}$ | 0.10026                   | 173.98      | 1.1453                | 0.08543                 |
| 0.29156                | $3.4434 \times 10^{37}$ | 0.1181                    | 198.61      | 1.4804                | 0.19431                 |
| 0.32116                | $3.9935 \times 10^{37}$ | 0.12435                   | 208.66      | 1.6542                | 0.27455                 |
| 0.35224                | $4.5623 \times 10^{37}$ | 0.12952                   | 218.13      | 1.8455                | 0.37757                 |
| 0.41144                | $5.625 \times 10^{37}$  | 0.13672                   | 233.9       | 2.2377                | 0.62107                 |
| 0.44252                | $6.1771 \times 10^{37}$ | 0.13959                   | 241.32      | 2.4591                | 0.77093                 |
| 0.47212                | $6.7017 \times 10^{37}$ | 0.14195                   | 247.96      | 2.6802                | 0.92646                 |
| 0.50172                | $7.2266 	imes 10^{37}$  | 0.14404                   | 254.28      | 2.9114                | 1.0939                  |


Table 11 Partial calculations of  $n_B$ ,  $n_e$ ,  $Y_e$  and  $E_F(e)$  for NL3 parameter set.


| 0.59052 | $8.8109 \times 10^{37}$ | 0.14921 | 271.64 | 3.6665 | 1.6631 |
|---------|-------------------------|---------|--------|--------|--------|
| 0.61124 | $9.1836 \times 10^{37}$ | 0.15025 | 275.42 | 3.8560 | 1.8098 |
| 0.64084 | $9.7183 \times 10^{37}$ | 0.15165 | 280.67 | 4.1356 | 2.0283 |
| 0.67488 | $1.0337 \times 10^{38}$ | 0.15316 | 286.50 | 4.4698 | 2.2923 |
| 0.70152 | $1.0823 \times 10^{38}$ | 0.15429 | 290.93 | 4.7409 | 2.5083 |
| 0.73112 | $1.1367 \times 10^{38}$ | 0.15547 | 295.72 | 5.0519 | 2.7579 |
| 0.76072 | $1.1913 \times 10^{38}$ | 0.15661 | 300.38 | 5.3733 | 3.0176 |
| 0.79328 | $1.2518 \times 10^{38}$ | 0.1578  | 305.38 | 5.738  | 3.3148 |
| 0.82288 | $1.307 \times 10^{38}$  | 0.15884 | 309.81 | 6.0816 | 3.5954 |
| 0.86136 | $1.3793 \times 10^{38}$ | 0.16013 | 315.41 | 6.5428 | 3.9749 |
| 0.89392 | $1.4407 \times 10^{38}$ | 0.16117 | 320.03 | 6.9466 | 4.309  |
| 0.92056 | $1.4913 \times 10^{38}$ | 0.162   | 323.73 | 7.2862 | 4.5912 |
| 0.95016 | $1.5477 \times 10^{38}$ | 0.16289 | 327.76 | 7.6732 | 4.914  |
| 0.98124 | $1.6072 \times 10^{38}$ | 0.1638  | 331.91 | 8.0905 | 5.2634 |
| 1.0034  | $1.6498 \times 10^{38}$ | 0.16442 | 334.82 | 8.3955 | 5.5196 |
| 1.0227  | $1.6869 \times 10^{38}$ | 0.16495 | 337.31 | 8.6645 | 5.746  |
| 1.0523  | $1.7442 \times 10^{38}$ | 0.16575 | 341.08 | 9.0867 | 6.1023 |
| 1.0922  | $1.8218 \times 10^{38}$ | 0.1668  | 346.07 | 9.6727 | 6.5987 |
| 1.1233  | $1.8825 \times 10^{38}$ | 0.16758 | 349.87 | 10.141 | 6.9969 |
| 1.1514  | $1.9376 \times 10^{38}$ | 0.16827 | 353.25 | 10.575 | 7.3664 |
| 1.2151  | $2.0629 \times 10^{38}$ | 0.16978 | 360.71 | 11.590 | 8.2346 |
| 1.2713  | $2.1745 \times 10^{38}$ | 0.17104 | 367.10 | 12.526 | 9.0387 |
| 1.2965  | $2.2246 \times 10^{38}$ | 0.17159 | 369.90 | 12.956 | 9.4097 |
| 1.3424  | $2.3164 \times 10^{38}$ | 0.17256 | 374.91 | 13.760 | 10.104 |
| 1.3705  | $2.3728 \times 10^{38}$ | 0.17314 | 377.93 | 14.264 | 10.541 |
| 1.4119  | $2.4563 \times 10^{38}$ | 0.17397 | 382.31 | 15.024 | 11.200 |
| 1.4431  | $2.5191 \times 10^{38}$ | 0.17457 | 385.54 | 15.607 | 11.707 |
| 1.4800  | $2.5941 \times 10^{38}$ | 0.17527 | 389.33 | 16.315 | 12.325 |



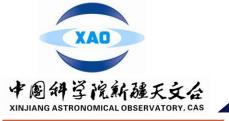



**Fig. 16** The relations of  $m_{max}$  and  $n_B(c)$  for RMF models.





The relation of  $Y_e$  and  $\rho$  in four MMF models

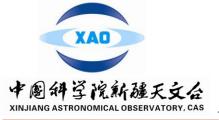



We obtain a set of analytical expressions of  $Y_e$  for TMA parameter set

 $Y_{\rm e} = -0.00316 + 0.05258\,\varrho - 0.00514\,\varrho^2,$ 

 $Y_{\rm e} = 0.08235 + 0.0124 \,\varrho - 5.04 \times 10^{-4} \,\varrho^2,$ 

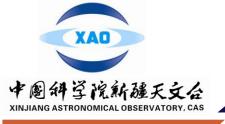
for  $\rho \sim (6.918 \times 10^{11} - 9.380 \times 10^{14})$  and  $(9.380 \times 10^{14} - 2.690 \times 10^{15})$  g cm<sup>-3</sup>, respectively. At the midpoint of  $2.988 \times 10^{14}$  g cm<sup>-3</sup>, the "jump" of  $Y_{\rm e}$  is about  $2.8 \times 10^{-3}$ , and its relative variation  $\sim 2.5\%$  confirming the continuities of two expressions above. The typical differences between the fit and the data are  $10^{-3} - 10^{-4}$ , and their relative differences are typically  $10^{-2} - 10^{-3}$ . The maximum absolute deviation and relative error are  $4.5 \times 10^{-3}$  and 3%, respectively, at the high-density end, due to uncertainty of the EoS.

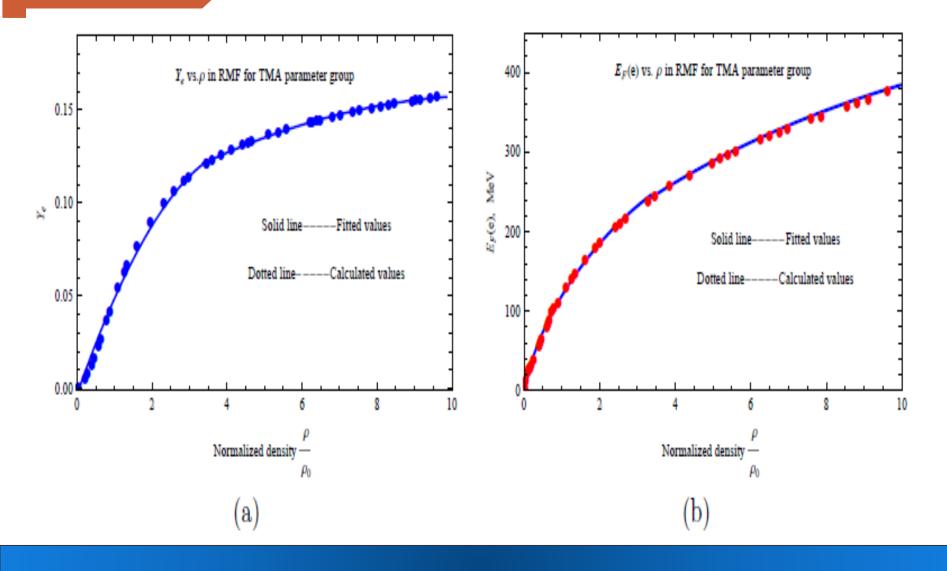


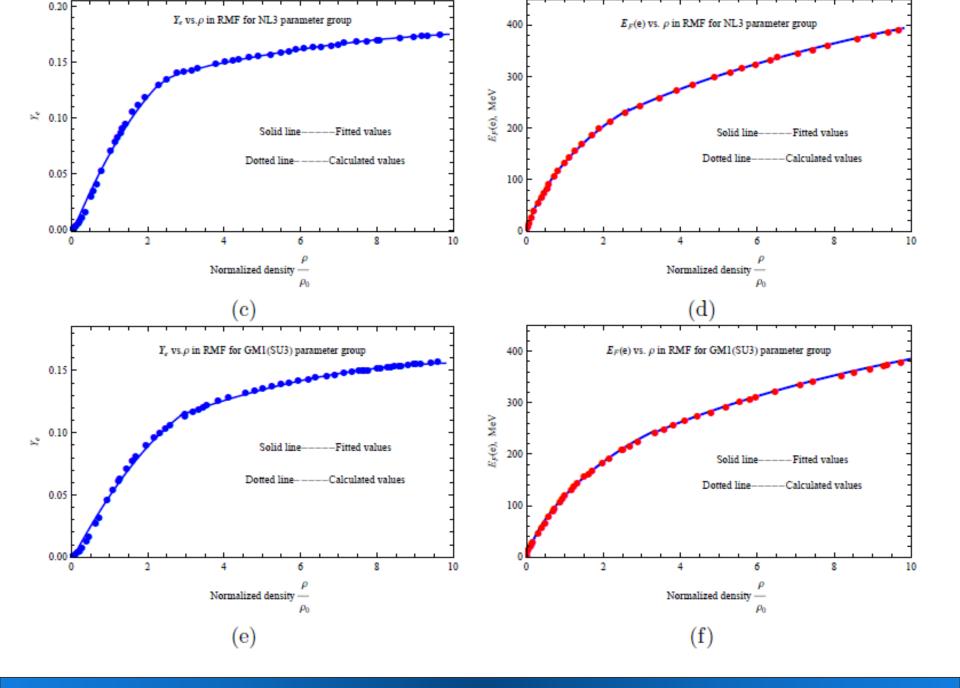

We obtain a set of analytical expressions of  $Y_e$  for GM1(SU3) parameter set

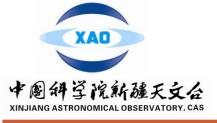
 $Y_{\rm e} = -0.00298 + 0.0526\,\varrho - 0.00494\,\varrho^2,$ 

 $Y_{\rm e} = 0.07663 + 0.0138 \,\varrho - 5.99 \times 10^{-4} \,\varrho^2,$ 


for  $\rho \sim (6.917 \times 10^{11} - 8.036 \times 10^{14})$  and  $(8.036 \times 10^{14} - 2.690 \times 10^{15})$  g cm<sup>-3</sup>, respectively. At the midpoint of  $8.036 \times 10^{14}$  g cm<sup>-3</sup>, the "jump" of  $Y_{\rm e}$  is about  $4 \times 10^{-3}$ , and its relative variation  $\sim 3.7\%$ , which also ensures the continuities of two expressions above. The typical differences between the fit and the data are  $10^{-3} - 10^{-4}$ , and their relative differences are typically  $10^{-3}$ . The maximum absolute deviation and relative error are  $3.2 \times 10^{-3}$  and 3%, respectively, at the high-density end.

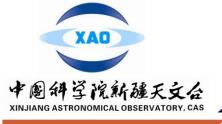




We obtain a set of analytical expressions of  $Y_e$  for NL3 parameter set


 $Y_{\rm e} = -0.00436 + 0.0749 \,\rho - 0.00851 \,\rho^2,$  $Y_{\rm e} = 0.11556 + 0.00931 \,\rho - 3.52 \times 10^{-4} \,\rho^2,$ 

for  $\rho \sim (5.688 \times 10^{11} - 7.420 \times 10^{14})$  and  $(7.420 \times 10^{14} - 2.708 \times 10^{15})$  g cm<sup>-3</sup>, respectively. At the midpoint of  $7.420 \times 10^{14}$  g cm<sup>-3</sup>, the "jump" of  $Y_{\rm e}$  is about  $3.4 \times 10^{-3}$ , and its relative variation  $\sim 2.5\%$ , which also ensures the continuities of two expressions above. The typical differences between the fit and the data and their relative differences are similar to those of T-MA parameter set. The maximum absolute deviation and relative error are  $3.5 \times 10^{-3}$  and 2%, respectively, at the high-density end.










## Conclusions

- > We deduce a uniform formula of Fermi energy degenerate and relativistic electrons in the weak-magnetic field approximation.
- > We performed numerical simulations firstly in APR98, then in RM models, and obtained a number of analytical representations of Ye.
- Since Ye and EF(e) are important in assessing cooling rate of a NS and the possibility of kaon/pion condensation in the NS interior, the analytical representations obtained will be very useful in the future study on thermal evolution of a NS and the EoS of NS's matter under extreme conditions, though our methods are indeed simple.



# Thank you for your attention!