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Scalar Perturbations in single field inflation

/7 Quantum
Fluctuation

flat gauge: |g; = €®’(d; + ;) and ¢ = do(t) + Sé(x, t)

unitary gauge: |g; = e2’T¢(8; + ;) and ¢ = ¢o(t)

¢~ Hig

¢ causes tiny O(1075) temperature anisotropies in the CMB!
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Intro

CMB spectra

Measuring the distribution of these small anisotropies in the CMB
has been our main window into the very early Universe
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Intro

CMB spectra

Measuring the distribution of these small anisotropies in the CMB
has been our main window into the very early Universe

° (CO) ~ wr

@ They follow nearly gaussian statistics
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Intro

CMB spectra

Measuring the distribution of these small anisotropies in the CMB
has been our main window into the very early Universe

H2
° <CC> ~ ’V’%F
@ They follow nearly gaussian statistics

@ But is that all? What about
(C(k1)C(k2)C(k3)) ~ fneS (ks k2, k3)
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Intro

CMB spectra

Measuring the distribution of these small anisotropies in the CMB
has been our main window into the very early Universe

° (CO)~ 4t

@ They follow nearly gaussian statistics

@ But is that all? What about
(C(k1)C(k2)¢(k3)) ~ furS(ke, k2, k3)

@ the shape function S(ki, k2, k3) and the overall amplitude 7y,
are model dependent

Spyros Sypsas dfi, fc/m, UChile Cross-tests of CMB features in the primordial spectra



Intro

CMB spectra

Measuring the distribution of these small anisotropies in the CMB
has been our main window into the very early Universe

° (CO)~ 4t

@ They follow nearly gaussian statistics

@ But is that all? What about
(C(k1)C(k2)¢(k3)) ~ furS(ke, k2, k3)

@ the shape function S(ki, k2, k3) and the overall amplitude 7y,
are model dependent

e for canonical single field inflation we have fy;, ~ O(€) and a
local shape
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Intro

CMB spectra

@ What if there is some short period of sudden change in the
slow roll dynamics? (e.g. inflationary potential with a step,
turning trajectory, etc.)
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Intro

CMB spectra

@ What if there is some short period of sudden change in the
slow roll dynamics? (e.g. inflationary potential with a step,
turning trajectory, etc.)

@ In that case the amplitude can be larger than usual slow roll
and the shape can be quite different too
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Intro

CMB spectra

@ What if there is some short period of sudden change in the

slow roll dynamics? (e.g. inflationary potential with a step,
turning trajectory, etc.)

@ In that case the amplitude can be larger than usual slow roll
and the shape can be quite different too

@ Does the 2-pt function allow for such speculation?
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Intro

CMB spectra

PLANCK 2015
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Intro

We have a pretty dense set of data for the power spectrum
allowing for a semi bottom-up approach. But for the bispectrum
the data set is quite sparse.

We need to predict shapes so that observational surveys can verify
them or rule them out.

That is, PLANCK can only tell us if a given shape has a
non-empty overlap with the existing data.
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Intro

Non gaussian estimator: define an inner product between two
shape functions as

Si xS = / (x0)*S1(x, ¥)S2(x, ¥)
X,y

. Now what PLANCK measures is

f_—e}q _ Sdata * Seq
n Seq * Seq

For example, if a model predicts equilateral non gaussianity with
amplitude fn‘e,q_m"de’ = 1/c2 and shape function S,,oder, then

5model * Seq i

f =
Seq * Seq €2

n
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Intro

The aim is to...

@ Relate the bispectrum to the power spectrum
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Intro

The aim is to...

@ Relate the bispectrum to the power spectrum
@ Relate the tensor spectrum to the scalar one
[INPUT: Ps]|

|OUTPUT: Bs & Pr]
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Intro

The aim is to...

@ Relate the bispectrum to the power spectrum
@ Relate the tensor spectrum to the scalar one
[INPUT: Ps]|

|OUTPUT: Bs & Pr]

@ Predict general bispectrum shapes for features
[OUTPUT: Bs |
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Inversion Methods

General |dea

P:/A(t)

B(ki, ko, k3) = fnr(A)S(ka, ko, k3)

|P(A) = A(P) — B(P)]
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Inversion Methods

Generalised Slow Roll / Fourier Transform

2 3 2 7.?’2 2
52 = Mmpy d>xdTa‘e C2: 1 - (VR)
)

o oo dk dlog Pr
n=—Jg GTm(=k7) dlog k

But 7 sources the relevant 3-pt interactions:
S3D /d4xa3em%1 [—T/RQR + %R(VR)z]

Computing the bispectrum using in-in formalism and plugging this
result into the final formula we get the desired

Bs(Ps)
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Bispectrum-Power Spectrum correlation

Appleby/Gong/Hazra/Shafieloo/SS '15,

The bispectrum template finally reads
Palma '14

=)

452
@em)*PL

2 2, 2\ kikotkokatkgk (ky ko) +(kok3)2+(k3k1)2  kykok
Br (ki, k2, k3) :7(k1k2k3)3{{(k1+k2+k3) ttiglatighy | (akp)Hliglel+lsh)” _ llols 1

+k1k82k3 &R} 7
We may test this formula using numerical computation of the

bispectrum for a known model with a feature in the potential:
V(6) = §mP? [1+ atanh (252 )]

k(Mpe )

Cross-tests of CMB features in the primordial spectra
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Bispectrum-Power Spectrum correlation

Prediction of the bispectrum shape
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FIgU re€: fnr, in the (left) squeezed and (right) equilateral limit. The dark (light) band encloses 68% (95%) of
the reconstructed Pz . The plot covers the entire range considered in this work, k = (10_3, 0.12) Mpc—t. The

inset plots exhibit certain k-bands of interest.
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Bispectrum-Power Spectrum correlation

Prediction of the bispectrum shape

FIgU re€. Heat maps of fﬁi" - 1&121 (top) and fI\?L20 - IGIZJ (bottom) as a function of k3 /k; and kp/ki, with
k1 = 0.0ﬁMpc_l. Regions of interest are fﬁia — 1{,‘3 < 0 and fl\?fg — 1&‘3 > 0, red (blue) contours in the

top (bottom) panel, indicating areas where the featureless expectation value lies outside the 95% contours.
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Using these methods we can also produce templates for a generic
situation where there are features in both the potential and kinetic
terms of the scalar perturbations

S50 / d*xadem?, [qR?R + %R(vn)ﬂ

After computing with in-in and inverting with Fourier we get

/x dke— (1Hxy)kT Swr(k,x,y) P 1+x2+y% - (x+y+x) (@n)”
—oo (@m* 2w 20xy)P(L4x+y)* oL+ x+y)*

Main idea:

we may now fix 2 triangle configurations, solve the algebraic
system for c1, ¢p, and plug them back to the

bispectrum Gong/Palma/SS '16
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Mixed Bispectrum Templates

3 proposed concistency relations

6(x +y + xy) — 3(1 + x2 + y? 14 x4+
SR(k,x,y):( y+xy) = 3( y)SR( yk,l,l)

(14 x+y)? 3

x4+y+xy—(1+x2+y2 T4+x+
_ gyt —( y)SR( yk,l,O).

1
(14 x +y)? 2 @)
18(x + y + xy) — 15(1 + x? + 2 1+x+
Sr(k,x,y) = (xty+x) (1+x y)SR< x yk,l,l)
1+x+y)? 3
Xx+y+xy— (L+x%+y?) 1+x+y
—16 TP = ( k,1/2, 1/2) . @)
6(x +y +xy) — 5(1 +x + y° 1+ x+
Srlkx,y) = — Y (TY) ()zx ”54‘?( = yk,l,O)
+x+y
8(x +y +xy) — 41+ x% +y? 1+ x+
4 Syt ) (ZX ”5;;"’( x yk.,1/2,1/2)4 @)
(I+x+y) 2
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Tensor Power Spectrum

We can play the same game for the tensor power spectrum:

APt 1 [t 167" 611 o
k3 k)= —= d o vr 2ikT
Po (k) 4/_OC Tl 7 €
APs 1 [T 165" b6s] .
k3 k)= —= d _ o 2ikT
Po (k) 4/_00 g 1272 74 €

For the tensor modes we have d1 ~ ¢, while for scalars

~ 2 M s 25
~ 7o ~ 76T

ds
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Main idea:
s = F(ds) — 6s(67) — FE=F(0r) —

AP APy AP AP
5= .7:(—7,07) invert! 55T = .7:(73—05)

Palma/Pradenas/Riquelme/SS '16

APt / / APs
=6 ([ dink
PO n € 7)0
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Concluding Remarks

Conclusions

@ We have used inversion methods to produce templates for the
primordial spectra in cases of sharp features (which are
supported at 20 by PLANCK PPS data)
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Concluding Remarks

Conclusions

@ We have used inversion methods to produce templates for the
primordial spectra in cases of sharp features (which are
supported at 20 by PLANCK PPS data)

@ background expansion rate with a fixed sound speed
(potential feature)
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Concluding Remarks

Conclusions

@ We have used inversion methods to produce templates for the
primordial spectra in cases of sharp features (which are
supported at 20 by PLANCK PPS data)

@ background expansion rate with a fixed sound speed
(potential feature)

@ generic models (potential/kinetic features)
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Concluding Remarks

Conclusions

@ We have used inversion methods to produce templates for the
primordial spectra in cases of sharp features (which are
supported at 20 by PLANCK PPS data)

@ background expansion rate with a fixed sound speed
(potential feature)

@ generic models (potential/kinetic features)

@ as well as the power spectrum of tensor modes
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Concluding Remarks

Future directions

This is a tool to produce multiple templates for any n-point
function of scalar-tensor perturbations.
Features in late-time observables? (matter power spectrum)
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Thank you !
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