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Introduction: We all want a good Magnetic Field

• Magnetic fields are just about everywhere in the Universe:
◦ Planets and Stars
◦ Galaxies and Clusters
◦ Filaments
◦ Voids?
◦ The Entire Universe?

• Astro/Cosmo Physicists love some magnetic fields
◦ Propagation of UHECRs
◦ Structure formation
◦ Very early Universe and beyond the Standard Model physics
◦ Astrophysical plasmas, hydrodynamics
◦ Radio-astronomy

Kronberg (1994); Grasso and Rubinstein (2001); Han and Wielebinski (2002); Vallée

(2004); Govoni and Feretti (2004); Durrer and Neronov (2013); Subramanian (2015)



M51

Lines indicate the orientation of the B field — Beck (2006)



Van Gogh

Lines follow the strokes of the brush — Van Gogh (1889)



Some Theory for the Theorists

Magnetogenesis mechanisms

• Astrophysics

Works well for small scales, but difficult to stretch/eject fields out across

several Mpc

• Phase transitions

See above: the coherence length for the EWPT is 100 AU, and it’s 1 pc for

the QCDPT

• Inflation

Great coherence lengths, but lilliputian field strengths...



Inflationary mechanisms

• EM is conformally invariant, and FLRW is conformally flat ⇒ needs BSM
physics

f 2F 2, RA2, aF F̃ , ((∂ + A)ψ)2, b(t)LEM ...

Typical issues: ghosts, strong coupling, loss of gauge invariance,
backreactions, anisotropies

a. Backreactions: ρEM � ερφ ⇒ Hφ � 10−19 GeV, that is: Tφ � 100 MeV
— Demozzi, Mukhanov and Rubinstein (2009); Green and Kobayashi (2016)

b. Anisotropies: 〈ζpζq〉 ∼ P(p) [1 + δP(p)] which severely constrains some
models — FU (2013a); (2013b)
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Effects on the CMB

• MF contribute to curvature
perturbations:
〈Bi (p)B∗j (q)〉
∼ {(δij − p̂i q̂j)PB(p)
+iεijk p̂kPH(p)}

• MF automatically generate
non-Gaussianity:
TMF ∼ B2

• Faraday rotation rotates
E-modes into B-modes

• Helical fields generate
parity-violating TB and EB
correlations



The Very Best Limits on egMF

Pshirkov, Tinyakov and FU

Phys Rev Lett 116, 191302 (2016)

arXiv:1504.06546 [astro-ph.CO]



The slide with THE formula

How do we look for extra-Galactic / Cosmological Magnetic Fields?

RM = 812

∫ 0

D

ne(z)B||(z)dl(z)

The polarisation angle of polarised light
ROTATES

when it travels through a magnetised medium
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How do we look for extra-Galactic / Cosmological Magnetic Fields?
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RM in theory

Simulation for a 1 nanoGauss field

lc= ΛJ

lc=1� H0

0 1 2 3 4 5

1

2

5

10

20

z

ÈR
R

M
x

È

The main ingredient here is the LogN electron density distribution taken from Lyα data

— Bi and Davidsen (1997)



RM in practice

We have ∼ 4K NVSS sources (of 40K) with known redshift and luminosity

All

HP

LP
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Pshirkov, Tinyakov and FU (2014)

Taylor, Stil and Sunstrum (2009); Hammond, Robishaw and Gaensler (2013)



To Build a Distro

In practice things are, surprise surprise, a tad bit messier than that...

RM = RMGMF + RMrGMF + RMerr + RMintrinsic

+ xRM← that’s what we want

¬ We subtract the RMGMF using the non-z sources

­ RMrGMF and RMerr: we have no clue... BUT! We can use low-z data
to extract this piece. Furthermore, RMintrinsic is small (from data)

® We simulate xRM, and put it together with the rest: we have our final
distro!
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KS p-values

lc= ΛJ

lc=1� H0
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KS contours
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Conclusions

• RMs are a powerful tool to learn about the Universe’s Magnetisation

• RMs of distant objects do not show any redshift evolution

• An egMF predicts a rising RM with redshift: compare with data!

• We devised a new algorithm to build a simulated RM distribution

• 2σ limits: B ≤ 1.2 nG @ 2.4 Mpc; B ≤ 0.5 nG Universe-wide.

◦ How do we fare?
◦ CMB limits: 2.8 nG for 1 Mpc. This can be as low as 0.9 nG for a flat

spectrum. These are only for primordial fields — Planck 2015, XIX
◦ RM, before this work: 6 nG for 2.4 Mpc, but no statistical significance

available — Blasi, Burles and and Olinto (1999)

We win :)
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