The Very Best Limit on Cosmological Magnetic Fields

How Rotation Measures teach us everything about extra-Galactic Magnetic Fields

Federico Urban

Keemilise ja Bioloogilise Füüsika Instituut

NICPB/KBFI

Tallinn

STARS2017 / SMFNS2017 Havana/Varadero, Cuba

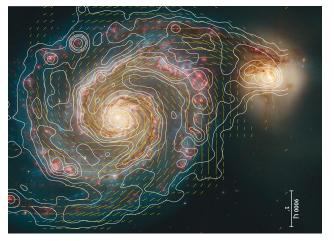
May 11th, 2017

QUESTIONS?

Introduction: We all want a good Magnetic Field

- Magnetic fields are just about everywhere in the Universe:
 - Planets and Stars
 - Galaxies and Clusters
 - Filaments
 - Voids?
 - The Entire Universe?
- Astro/Cosmo Physicists love some magnetic fields
 - Propagation of UHECRs
 - Structure formation
 - Very early Universe and beyond the Standard Model physics
 - Astrophysical plasmas, hydrodynamics
 - Radio-astronomy

Kronberg (1994); Grasso and Rubinstein (2001); Han and Wielebinski (2002); Vallée (2004); Govoni and Feretti (2004); Durrer and Neronov (2013); Subramanian (2015)



Lines indicate the orientation of the B field — Beck (2006)

Van Gogh

Lines follow the strokes of the brush — Van Gogh (1889)

Some Theory for the Theorists

Magnetogenesis mechanisms

Astrophysics

Works well for small scales, but difficult to stretch/eject fields out across several Mpc

Phase transitions

See above: the coherence length for the EWPT is $100\ AU$, and it's $1\ pc$ for the QCDPT

Inflation

Great coherence lengths, but lilliputian field strengths...

Inflationary mechanisms

EM is conformally invariant, and FLRW is conformally flat ⇒ needs BSM physics

$$f^2F^2$$
, RA^2 , $aF\tilde{F}$, $((\partial + A)\psi)^2$, $b(t)\mathcal{L}_{\mathsf{EM}}$...

Typical issues: ghosts, strong coupling, loss of gauge invariance, backreactions, anisotropies

Inflationary mechanisms

EM is conformally invariant, and FLRW is conformally flat ⇒ needs BSM physics

$$f^2F^2$$
, RA^2 , $aF\tilde{F}$, $((\partial + A)\psi)^2$, $b(t)\mathcal{L}_{\mathsf{EM}}$...

Typical issues: ghosts, strong coupling, loss of gauge invariance, backreactions, anisotropies

a. Backreactions: $ho_{\rm EM}\ll\epsilon\rho_{\phi}\Rightarrow H_{\phi}\ll10^{-19}$ GeV, that is: $T_{\phi}\ll100$ MeV — Demozzi, Mukhanov and Rubinstein (2009); Green and Kobayashi (2016)

Inflationary mechanisms

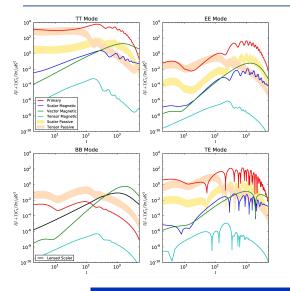
EM is conformally invariant, and FLRW is conformally flat ⇒ needs BSM physics

$$f^2F^2$$
, RA^2 , $aF\tilde{F}$, $((\partial + A)\psi)^2$, $b(t)\mathcal{L}_{\mathsf{EM}}$...

Typical issues: ghosts, strong coupling, loss of gauge invariance, backreactions, anisotropies

- a. Backreactions: $ho_{\rm EM}\ll\epsilon\rho_{\phi}\Rightarrow H_{\phi}\ll10^{-19}$ GeV, that is: $T_{\phi}\ll100$ MeV Demozzi, Mukhanov and Rubinstein (2009); Green and Kobayashi (2016)
- b. Anisotropies: $\langle \zeta_{\bf p} \zeta_{\bf q} \rangle \sim P(p) \left[1 + \delta P({\bf p}) \right]$ which severely constrains some models FU (2013a); (2013b)

Effects on the CMB



- MF contribute to curvature perturbations: \langle B_i(\mathbf{p}) B_i^*(\mathbf{q}) \rangle
 - $\sim \{(\delta_{ij} \hat{p}_i \hat{q}_j) P_B(p) + i\epsilon_{ijk} \hat{p}_k P_H(p)\}$ MF automatically generate
- non-Gaussianity: $T_{\rm MF} \sim B^2$
- Faraday rotation rotates
 E-modes into B-modes
- Helical fields generate parity-violating TB and EB correlations

The Very Best Limits on egMF

Pshirkov, Tinyakov and FU Phys Rev Lett **116**, 191302 (2016)

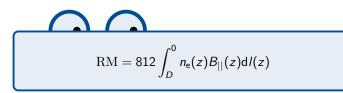
arXiv:1504.06546 [astro-ph.CO]

The slide with THE formula

How do we look for extra-Galactic / Cosmological Magnetic Fields?

The slide with THE formula

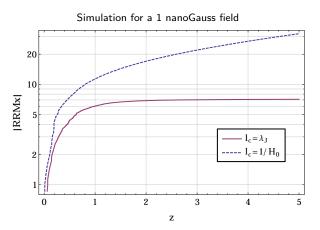
How do we look for extra-Galactic / Cosmological Magnetic Fields?



The polarisation angle of polarised light ROTATES

when it travels through a magnetised medium

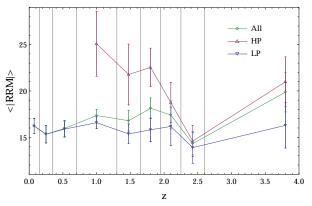
RM in theory



The main ingredient here is the LogN electron density distribution taken from Ly α data — Bi and Davidsen (1997)

RM in practice

We have \sim 4K NVSS sources (of 40K) with known redshift and luminosity



Pshirkov, Tinyakov and FU (2014)

Taylor, Stil and Sunstrum (2009); Hammond, Robishaw and Gaensler (2013)

$$\begin{split} RM &= \frac{RM_{\text{GMF}}}{RM} + RM_{\text{rGMF}} + RM_{\text{err}} + RM_{\text{intrinsic}} \\ &+ xRM \leftarrow \text{that's what we want} \end{split}$$

In practice things are, surprise surprise, a tad bit messier than that...

$$\begin{split} RM &= \frac{RM_{\text{GMF}}}{RM} + RM_{\text{rGMF}} + RM_{\text{err}} + RM_{\text{intrinsic}} \\ &+ \varkappa RM \leftarrow \text{that's what we want} \end{split}$$

① We subtract the RM_{GMF} using the non-z sources

$$\begin{split} RM &= \frac{RM_{\text{GMF}}}{RM_{\text{FMF}}} + RM_{\text{rGMF}} + RM_{\text{err}} + RM_{\text{intrinsic}} \\ &+ \varkappa RM \leftarrow \text{that's what we want} \end{split}$$

- ① We subtract the RM_{GMF} using the non-z sources
- $2 RM_{rGMF}$ and RM_{err} : we have no clue...

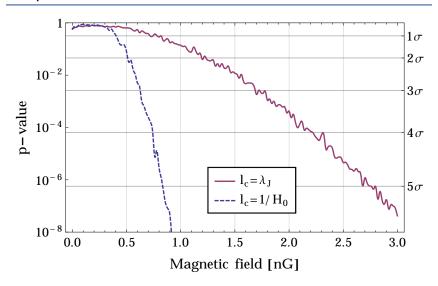
$$\begin{split} RM &= \frac{RM_{\text{GMF}}}{RM} + RM_{\text{rGMF}} + RM_{\text{err}} + RM_{\text{intrinsic}} \\ &+ \varkappa RM \leftarrow \text{that's what we want} \end{split}$$

- ① We subtract the RM_{GMF} using the non-z sources
- ② RM_{rGMF} and RM_{err} : we have no clue... BUT! We can use low-z data to extract this piece. Furthermore, $RM_{\mathsf{intrinsic}}$ is small (from data)

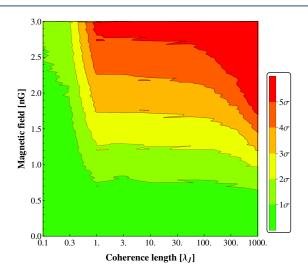
$$\begin{split} RM &= \frac{RM_{\text{GMF}}}{R} + RM_{\text{rGMF}} + RM_{\text{err}} + RM_{\text{intrinsic}} \\ &+ \varkappa RM \leftarrow \text{that's what we want} \end{split}$$

- ① We subtract the RM_{GMF} using the non-z sources
- @ RM_{rGMF} and RM_{err} : we have no clue... BUT! We can use low-z data to extract this piece. Furthermore, $RM_{intrinsic}$ is small (from data)

KS p-values



KS contours



- RMs are a powerful tool to learn about the Universe's Magnetisation
- RMs of distant objects do not show any redshift evolution
- An egMF predicts a rising RM with redshift: compare with data!
- We devised a new algorithm to build a simulated RM distribution

- RMs are a powerful tool to learn about the Universe's Magnetisation
- RMs of distant objects do not show any redshift evolution
- An egMF predicts a rising RM with redshift: compare with data!
- We devised a new algorithm to build a simulated RM distribution
- 2σ limits: $B \le 1.2$ nG @ 2.4 Mpc; $B \le 0.5$ nG Universe-wide.

- RMs are a powerful tool to learn about the Universe's Magnetisation
- RMs of distant objects do not show any redshift evolution
- An egMF predicts a rising RM with redshift: compare with data!
- We devised a new algorithm to build a simulated RM distribution
- 2σ limits: $B \le 1.2$ nG @ 2.4 Mpc; $B \le 0.5$ nG Universe-wide.
 - How do we fare?
 - CMB limits: 2.8 nG for 1 Mpc. This can be as low as 0.9 nG for a flat spectrum. These are only for *primordial* fields — Planck 2015, XIX
 - RM, before this work: 6 nG for 2.4 Mpc, but no statistical significance available — Blasi, Burles and And Olinto (1999)

- RMs are a powerful tool to learn about the Universe's Magnetisation
- RMs of distant objects do not show any redshift evolution
- An egMF predicts a rising RM with redshift: compare with data!
- We devised a new algorithm to build a simulated RM distribution
- 2σ limits: $B \le 1.2$ nG @ 2.4 Mpc; $B \le 0.5$ nG Universe-wide.
 - How do we fare?
 - CMB limits: 2.8 nG for 1 Mpc. This can be as low as 0.9 nG for a flat spectrum. These are only for *primordial* fields — Planck 2015, XIX
 - RM, before this work: 6 nG for 2.4 Mpc, but no statistical significance available — Blasi, Burles and Olinto (1999)

We win:)