
STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

Chiral Effects in gauges theories

Authors: J. L. Acosta Avalo.

H. Pérez Rojas.

Dept: Física Teórica.
Instituto de Cibernética Matemática y Física (ICIMAF), Calle E esq 15, No. 309, Vedado,

La Habana, 10400 Cuba.
Instituto Superior de Tecnologías y Ciencias Aplicadas (INSTEC), Ave Salvador Allende,

No. 1110, Vedado, La Habana, 10400 Cuba.



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

QCD has infinite vacuum
states with the same energy
Topologically non equivalents

QCD axial anomaly
⇓

NL −NR = 2nNf , Nf = 6
⇓

The axial charge
conservation is violated

Instantons⇔ tunneling
transitions

Sphalerons⇔ non tunneling
transitions

QCD vacuum state→ linear
combination

|θ >=
∑
n

einθ|n >
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Conclusions

QCD special fields connect different topologic vacua↔ with
different axial charges

⇒ conexion between the axial anomaly and QCD vacuum

|θ > can be reproduced if the term:

Lθ =
αsθ

8π
GaµνG̃

µν
a

is added to QCD Lagrangian in the Minkoswski space.

αs → QCD coupling constant.
Gaµν → field tensor of gluonic force and G̃µνa is its dual tensor.

!!!This term violates the P -and CP -invariance!!!⇔ Strong CP
Problem
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Conclusions

No magnetic field⇒ No
polarization.
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Conclusions

A field B will align the spins,
depending on their electric
charges

R-helicity quark will has
momentum opposite to a
L-helicity one

!!! A field B can distinguish
between R and L!!!

!!! An electric current along
B is imposible
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Conclusions

What does a field B do with
chirality?

e+ move parallel to B
e− move antiparallel to B

!!An electric current is
created along B !!⇔ The
Chiral Magnetic Effect in
QCD

Electric current

j =
e2

2π2
µ5B

!!!The chiral chemical potential
µ5 isn’t well defined!!!
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QED Axial anomaly

∂µj
µ
A = − e2

16π2
F̃µνFµν 6= 0

Axial anomaly in terms of the electric E and magnetic B fields

∂µj
µ
A =

e2

2π2
E · B 6= 0

Electromagnetic decay (π0 → γγ)

Γ(π0 → 2γ) =
α2
s

32π3

m3
π0

f2
π
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Motivation

The chiral effects have important applications in:
Heavy-ion collisions experiments

Dirac semimetals and graphene in magnetic fields

Compact objets in astrophysics scenarios

The chiral effects are related with:
Axial anomalies in quantum field theory

QCD vacuum structure

The Strong CP Problem

The topological mass generation in Chern-Simons theories



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

Overview
The results are based on the QFT formalism at finite
temperature and density (massive fermions).
We obtain a chiral current generation1 in QED by longitudinal
photons in a magnetized medium (Chiral magnetic effect).
We introduce only an electromagnetic chemical potential-µ
and not a µ5.
An anomaly relation for the axial current in a magnetized
medium is found,→ analogy to the Adler-Bell-Jackiw
anomaly.
We obtain an useful expression associated to the chiral
asymmetry due to pair creation in a magnetized medium.
In the static limit, an electric pseudovector current is
obtained.
We’ll discuss the µ5−term in the frame of electroweak theory.

1- J.L. Acosta Avalo, H. Pérez Rojas, Nucl Phys. B 909 (2016) 230-242.
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Conclusions

We consider an electron-positron plasma in an external field B

Electrons and positrons move in bound states characterized by
energy levels:

εnl,p3 =
√
p2

3 +m2 + |e|B(2nl + 1− sgn(e)s3)

s3 = ±1→ spin eigenvalues along x3

nl = 0, 1, ... are the Landau quantum numbers
for nl = 0, s3 = −1 for electrons and s3 = 1 for positrons



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

If we will make here the fundamental assumption: 2eB � µ2, T 2

⇒ only the ground state LLL dominant

In equilibrium at temperature T and chemical potential µ

Net density of charged particles in the LLL

N0 =
eB

2π2
[

∫ 0

−∞
dp3(neR − n

p
L) +

∫ ∞
0

dp3(neL − n
p
R)]

Magnetization in the LLL

M0 =
e

4π2
[

∫ 0

−∞

p2
3dp3

ε0
(neR + npL) +

∫ ∞
0

p2
3dp3

ε0
(neL + npR)]

ne,p = [1 + e(ε0∓µ)/T ]−1 are the densities(T in energy units)

Exchange p3 ↔ −p3 ⇒ !!! equal densities with L,R helicities
in the state of equilibrium!!!
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Conclusions

⇒ there is not electric
charges separation

The magnetic moments are
aligned along B,→
paramagnetic behavior

To higher Landau quantum
numbers contribute→
paramagnetic and
diamagnetic terms
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Conclusions

The equation of Schwinger-Dyson for the photon:

[k2gµν −Πµν(k|Aextµ )]Aν(k) = 0

Aµ → (radiation field) is a small perturbation added to Aextµ

(external field)

Aextµ +Aµ → the total external electromagnetic field

The quantum corrections are given for the tensor of polarization
Πµν



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

In a magnetized medium, for propagation along B, they are:

Two transverse modes dependent of the
C-symmetry-(Quantum Faraday Effect)
A longitudinal mode independent of the C-symmetry-(Chiral
Magnetic Effect)

For each mode it’s obtained a dispersion law

k2 = ηi(k3, k⊥, ω,B), Πµνb
ν(i) = ηib

(i)
µ

k2 = k2
3 + k2

⊥ − ω2, k3 and k⊥ are respectively the components of
the photon four-momentum in directions ‖ and ⊥ to B, and ω its
energy
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Conclusions

The longitudinal mode is a pseudovector given by:

b(2)
µ (k) = Ac(2)

µ (k)

c
(2)
µ = R2(F̃ k)µ → pseudovector
R2 = 1/B

√
z1, z1 = k2

3 − ω2 (normalization constant)
A→ parameter ( in potential vector units)
F̃µν → the dual of the electromagnetic field tensor Fµν

The electric pseudovector associated to b(2)µ is:

EB = E(2)eB = A(k2
3 − ω2)

1
2 eB

!!! The longitudinal photon is not on the light cone, that is
k2

3 − ω2 6= 0 !!!
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Conclusions

The electromagnetic current as a function of Aextµ +Aµ depends on
the two relativistic invariants:

F =
1

4
FµνFµν =

1

2
(B2 − E2) ' 1

2
B2, E � B

G =
1

4
F̃µνFµν = E · B

The pseudoscalar G 6= 0 only for the longitudinal mode

An expansion in functional series gives:

jµ(Aextµ +Aµ) = jµ(Aextµ ) + (δjµ/δA
ext
ν )Aν + ...
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Its linear term in Aν is:

ji = ΠiνAν = YijEj , ν = 1, 2, 3, 4, i, j = 1, 2, 3

Ej = i(ωAj − kjA0) is the electric field, with A4 = iA0 and
k4 = iω

jµ(Aextµ ) = N0δµ4

The complex conductivity tensor or admittivity is:

Yij = Πij/iω
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Conclusions

Aµ → is a linear combination of the eigenmodes b(i)µ

If we will consider Aµ = b
(2)
µ (E ‖ B)⇒ problem in (1 + 1)

dimensions

This is strictly valid if we consider only the LLL

We will use the two-dimensional identity of Dirac matrices

γµγ5 = −εµνγν

We can study the properties of the axial vector current by using
results already derived for the vector current
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Conclusions

We must observe that from the linear approximation of ji, and the
eigenvalue equation one gets also:

ji = ΠiνA
ν = sb

(2)
i

s = c
(2)
ν Πν

ρc
ρ(2) → is the eigenvalue of Πµν corresponding to

the longitudinal mode

!!!! b(2)
ν is a pseudovector !!!!⇒ !!! the current jν is also a

pseudovector!!!

This is necessary for the breaking of chiral symmetry
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Conclusions

Using the two-dimensional transversality condition Πµνkν = 0 ,
we obtain:

The non-conservation of the two-dimensional axial current:

kµj
µ
A =

z1

k4
j3 6= 0

Electric pseudovector breaks the chiral symmetry in both the
C-symmetric and non-symmetric cases

⇓
A chiral magnetic effect is produced in the frame of QED

We are interested only in the region of real frequency k2
3 > z1 and

momentum
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Conclusions

The current density can be written in the general form as:

ji = σ0
ijEj + (E × S)i

σ0
ij = Im[Πs

ij ]/ω, Si =
1

2
εijkσHjk

σHjk = Im[ΠA
ij ]/ω

εijk → is the third rank antisymmetric unit tensor.
Πs
ij ,Π

A
ij → are the symmetric and antisymmetric parts of Πµν .

The first term of the current density corresponds to the Ohm
current and the second is the Hall current.
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Conclusions

Here we’ll only work with the current associated to the longitudinal
mode.

The current density associated to the longitudinal mode can
be expressed in the form:

j3 = σ0
33E3

σ0
33 = Im[Π33]/ω = −ωIm[s]/z1

!!! σ0
33 is the chiral conductivity!!!
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Conclusions

Scalar s in the one-loop approximation is given by:

s = −e
3B

π2

∞∑
n=0

∫ ∞
−∞

dp3

εq
[

αnε
2
n,0(2p3k3 + z1)

4z1p2
3 + 4p3k3z1 + z2

1 − 4ω2ε2
n,0

]

·[np(εq) + ne(εq)− 1]

εn,0 =
√
m2 + 2eBn, n = nl + 1/2 + s3/2

αn = 2− δn,0, q = (n, p3)

The imaginary part of the scalar s is given by:

Im[s] = −e
3B

2π

∞∑
n=0

αnε
2
n,0Sn
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The chiral conductivity at finite temperature T and density µ is
given by:

σ0
33 =

e3Bω

2πz1

∞∑
n=0

αnε
2
n,0Sn

Sn = {θ(z1)∆N + θ(−4ε2
n,0 − z1)∆H}/Λ

Λ =
√
z1(z1 + 4ε2

n,0)

!!! Scattering or pair creation contribute⇒ chiral conductivity !!!

The chiral conductivity contains both diamagnetic and
paramagnetic terms
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∆N = [N(εr)−N(εr + ω)]

∆N accounts for the excita-
tion of particles [ε(p3, n) −→
ε(p3 + k3, n)] by increasing
their momentum along B
(only for z1 > 0).

∆H = [H(−εs)+H(ω+εs)−2]

∆H accounts for the pair
creation (only in the region
z1 < −4ε2

n,0).

N = ne(εr) + np(εr), H = ne(εs) + np(ω − εs)

εs = (ωz1+|k3|Λ)/2z1, εr = (−ωz1 + |k3|Λ)/2z1, r, s = (n, ω, k3)



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

∆N = [N(εr)−N(εr + ω)]

∆N accounts for the excita-
tion of particles [ε(p3, n) −→
ε(p3 + k3, n)] by increasing
their momentum along B
(only for z1 > 0).

∆H = [H(−εs)+H(ω+εs)−2]

∆H accounts for the pair
creation (only in the region
z1 < −4ε2

n,0).

N = ne(εr) + np(εr), H = ne(εs) + np(ω − εs)

εs = (ωz1+|k3|Λ)/2z1, εr = (−ωz1 + |k3|Λ)/2z1, r, s = (n, ω, k3)



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

For magnetic fields very strong, such that: 2eB � µ2, T 2 ⇒ the
LLL dominant.

Chiral conductivity in the LLL

σ0
33 =

e3Bω

2πz1
m2S0

S0 =
θ1∆NR + θ2∆HR√

z1(z1 + 4m2)

θ1 = θ(z1), θ2 = θ(−4ε2
n,0 − z1)
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In the low frequency limit ω → 0⇒ |k3| � ω

We have conditions very close to the static electric field case.

Chiral current is given by:

j3=
e3

8π

m2

|k3|λ
1

T
[

1

1 + cosh(λ−µT )
+

1

1 + cosh(λ+µ
T )

](E(2) · B)

E(2) = A|k3|e3

λ = (
√
k2

3 + 4m2)/2

!!!Notice that j3 6= 0 for µ = 0!!!
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Taking into account the expression for the four-divergence of jµA
and the equation for σ0

33 it is obtained:

Anomaly relation for jµA in a medium of massive particles

kµj
µ
A = β[mA(m) + C(m)]

e2

2π2
E · B

A(m) = (2πm/e)

∞∑
n=0

αnSn

C(m) = 8πB

∞∑
n=1

nSn
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If we consider z1 < −4m2, only the LLL.

Pair creation contribution to the non conservation of jµA

kµj
µ
A = β

m2√
z1(z1 + 4m2)

∆HR (E(2) · B).

!!!The pair creation can generate a chiral asymmetry in a
magnetized medium!!!
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We consider the Weinberg-Salam model including leptons and
quarks

The electric and weak neutral charges are:

Qe = e[P iνε
i3kW k

ν +
i

2
PψL(τ3−I)ψL−iPeReR+

i

2
PQL(τ3+

I

3
)QL+

2i

3

PuRuR − i
3PdRdR − iPφ† [ 1

2 (τ3 + I)φ†] + i[ 1
2 (τ3 + I)φ]Pφ]

QN =
1√

g2 + g′2
[−g2P iνε

ij3W j
ν −

i

2
PψL(g2τ3 + g′2I)ψL − ig′2PeR

eR− i
2PQL(g2τ3−g′2 I3 )QL+ 2i

3 g
′2PuRuR− i

3g
′2PdRdR+iPφ† [ 1

2 (g2τ3

-g′2I)φ†]− i[ 1
2 (g2τ3 − g′2I)φ]Pφ]
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Where the conjugated momenta are:

P iµ = iGi4µ, PBµ = iF i4µ, PψL = iψ̄Lγ0, PeR = iēRγ0,

PQL = iQ̄Lγ0, PuR = iQ̄Rγ0, PdR = id̄Rγ0, Pφ = i(∂4 + i g2τ
i

Wi
4 + i g

′

2 B4)φ†, Pφ† = i(∂4 − i g2τ
iW i

4 − i
g′

2 B4)φ, Pψ̄L = 0
PQ̄L = 0, Pd̄R = 0, PēR = 0, PūR = 0

The field tensor of the SU(2) non-abelian field

Giµν = ∂µW
i
ν − ∂νW i

µ + gεijkW i
µW

i
ν

The abelian gauge field tensor

Fµν = ∂µBν − ∂νBµ
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Starting from density matrix, we may get

The partition funtional

Z = N(β)

∫ ∏
l,m

DPmB DP
l
ψ̄DP

l
ψDB

mDψ̄lDψl
∏
n

δ(Cn)×
3∏
j=0

δ(Gj)×

×(DetM)× e
∫ β
0
dx4

∫
d3x[iPB

l
Ḃl+iPmψ ψ̇

m−H+
∑
µiNi]

N(β)→ temperature dependent constant
Bl → bosons
ψl→ fermions
δ(Cn)→ delta functions for the constraints (momenta)
δ(Gj)→ delta functions for the gauge conditions
DetM→ Faddev-Popov determinant
H→ Hamiltonian



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

where
N1 = Qe/e→ charged particles density
N2 = N l = −i(PψLψL + PeReR)→ lepton number density
N3 = QN/cot2θ→ neutral charge density, tanθ = g′/g

N4 = NQ = −i(PQLQL + PuRuR + PdRdR)→ quark density

Chemical equilibrium equations

µeR − µeL = µ3Λ(g, g′), µuR − µuL = µ3Λ(g, g′)

µdR − µdL = µ3Λ(g, g′), Λ(g, g′) = ( g
2+g′2

g2−g′2 )

chemical potential associated to the Higgs scalar

µσ = µ3Λ(g, g′) = µR − µL



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

where
N1 = Qe/e→ charged particles density
N2 = N l = −i(PψLψL + PeReR)→ lepton number density
N3 = QN/cot2θ→ neutral charge density, tanθ = g′/g

N4 = NQ = −i(PQLQL + PuRuR + PdRdR)→ quark density

Chemical equilibrium equations

µeR − µeL = µ3Λ(g, g′), µuR − µuL = µ3Λ(g, g′)

µdR − µdL = µ3Λ(g, g′), Λ(g, g′) = ( g
2+g′2

g2−g′2 )

chemical potential associated to the Higgs scalar

µσ = µ3Λ(g, g′) = µR − µL



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

where
N1 = Qe/e→ charged particles density
N2 = N l = −i(PψLψL + PeReR)→ lepton number density
N3 = QN/cot2θ→ neutral charge density, tanθ = g′/g

N4 = NQ = −i(PQLQL + PuRuR + PdRdR)→ quark density

Chemical equilibrium equations

µeR − µeL = µ3Λ(g, g′), µuR − µuL = µ3Λ(g, g′)

µdR − µdL = µ3Λ(g, g′), Λ(g, g′) = ( g
2+g′2

g2−g′2 )

chemical potential associated to the Higgs scalar

µσ = µ3Λ(g, g′) = µR − µL



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

If µ3 = 0 for T < Tc (symmetry restoration temperature)→
gauge invariance plus symmetry breaking would lead to the
validity of the Higgs mechanism

If µ3 6= 0→ Higgs field σ and the Goldstone boson h3 would
be weakly-neutrally charged, but h3 can be eliminated from
the theory by taking the unitary gauge

Scalar field→ φ = 1√
2

(
0
ξ

)
+

(
ih1 + h2

σ + ih3

)
,

ξ 6= 0 is the symmetry breakdown parameter

⇒ a non-conservation of the weak neutral charge due to
Higgs mechanism !! contradiction !!

It can be eliminated, if we take µ3 = 0 for T < Tc

For T > Tc, we may have µ3 6= 0→ It doesn’t contradict the
neutral charge conservation



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

If µ3 = 0 for T < Tc (symmetry restoration temperature)→
gauge invariance plus symmetry breaking would lead to the
validity of the Higgs mechanism

If µ3 6= 0→ Higgs field σ and the Goldstone boson h3 would
be weakly-neutrally charged, but h3 can be eliminated from
the theory by taking the unitary gauge

Scalar field→ φ = 1√
2

(
0
ξ

)
+

(
ih1 + h2

σ + ih3

)
,

ξ 6= 0 is the symmetry breakdown parameter

⇒ a non-conservation of the weak neutral charge due to
Higgs mechanism !! contradiction !!

It can be eliminated, if we take µ3 = 0 for T < Tc

For T > Tc, we may have µ3 6= 0→ It doesn’t contradict the
neutral charge conservation



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

If µ3 = 0 for T < Tc (symmetry restoration temperature)→
gauge invariance plus symmetry breaking would lead to the
validity of the Higgs mechanism

If µ3 6= 0→ Higgs field σ and the Goldstone boson h3 would
be weakly-neutrally charged, but h3 can be eliminated from
the theory by taking the unitary gauge

Scalar field→ φ = 1√
2

(
0
ξ

)
+

(
ih1 + h2

σ + ih3

)
,

ξ 6= 0 is the symmetry breakdown parameter

⇒ a non-conservation of the weak neutral charge due to
Higgs mechanism !! contradiction !!

It can be eliminated, if we take µ3 = 0 for T < Tc

For T > Tc, we may have µ3 6= 0→ It doesn’t contradict the
neutral charge conservation



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

If µ3 = 0 for T < Tc (symmetry restoration temperature)→
gauge invariance plus symmetry breaking would lead to the
validity of the Higgs mechanism

If µ3 6= 0→ Higgs field σ and the Goldstone boson h3 would
be weakly-neutrally charged, but h3 can be eliminated from
the theory by taking the unitary gauge

Scalar field→ φ = 1√
2

(
0
ξ

)
+

(
ih1 + h2

σ + ih3

)
,

ξ 6= 0 is the symmetry breakdown parameter

⇒ a non-conservation of the weak neutral charge due to
Higgs mechanism !! contradiction !!

It can be eliminated, if we take µ3 = 0 for T < Tc

For T > Tc, we may have µ3 6= 0→ It doesn’t contradict the
neutral charge conservation



STARS-SMFNS-
2017

Introduction
Overview

Chiral current
generation in a
magnetized
medium
Chiral current
induced by
longitudinal
photons

Chiral conductivity
in non-static limit

Chiral current in the
static limit for the
LLL

Axial anomaly in a
medium of massive
fermions

Quantum
Statistics of the
Electroweak
Plasma

Conclusions

In the literature is usually defined the chiral chemical potential as:
µ5 = µR − µL

In QED→ [QA, H] 6= 0⇒ the axial charge is not conserved,
even for massless fermions, due to axial anomalies

⇒!! is not possible defined a µ5

In an Electroweak plasma→ there is a relation between the
neutral chemical potential-µ3 associated to the weak-neutral
charge-QN , µσ and µ5

In our case µ5 6= 0⇒ !!!contradiction!!!
m

non-conservation of the weak-neutral charge due to Higgs
mechanism for T < Tc
conservation of the Higgs bosons number
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Conclusions

Conclusions:
We conclude, that as a consequence of:

The breaking of spacial symmetry due to B
The breaking of chiral symmetry due to B and E

Chiral effects are generated as:
Quantum Faraday Effect
Chiral Magnetic Effect

The main results are:

We obtained the chiral current generation in QED by longitudinal
photons in a magnetized medium

!!!Chiral Magnetic Effect in QED!!!
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Conclusions

Conclusions:
As difference of Chiral Magnetic Effect discussed in the literature:

We didn’t need to introduce a µ5

In QCD: The imbalanced chirality is associated to→ winding
number→ Instantons-Sphalerons

In our case: The imbalanced chirality is associated to→
longitudinal pseudovector photons

An electromagnetic chemical potential µ was introduced
But the electric current reported is C-symmetry

We introduced a mass fermion, which is usually considered zero in
the literature
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Conclusions

Conclusions:
The chiral conductivity was calculated at finite temperature and
density

It is due to:
Electrons and positrons scattered by longitudinal
photons(inside the light cone)
The pair creation due to longitudinal photons (out of light cone)

For fixed values (k3, ω)→ only one of these process contribute

The pair creation generate a chiral asymmetry in a magnetized
medium

We obtained an expression for the chiral current along B in the
static limit, this depends (m, p3, T, µ)
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Electrons and positrons scattered by longitudinal
photons(inside the light cone)
The pair creation due to longitudinal photons (out of light cone)

For fixed values (k3, ω)→ only one of these process contribute

The pair creation generate a chiral asymmetry in a magnetized
medium

We obtained an expression for the chiral current along B in the
static limit, this depends (m, p3, T, µ)
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Conclusions:

In the QFT formalism at finite temperature and density.
We obtained an anomaly relation for the axial current in a
magnetized medium Analogy to the Adler-Bell-Jackiw relation

This means the possibility of longitudinal photon splitting in two
transverse ones in a magnetized medium

An expression for the chiral current in terms of photon self-energy
tensor was given. A similar expression could be found for a
quark-antiquark gas, if we consider QCD coupled to
electromagnetism

The usual µ5− definition generates a contradiction in the frame of
electroweak theory⇔ non-conservation of the QN and
conservation of the Higgs bosons number
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.......Thanks.......
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~ck3 = 1 MeV

~ω = 10 eV

Blue curve:
µ = 25 MeV
(n = 10)
Green curve:
µ = 12 MeV
(n = 5)
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If we consider:
The C-non symmetric case.
Low temperatures (positron contribution is negligible).
mc� p3, con µ & mc2

Chiral current in the non relativistic limit

j3 =
αe

16π

mc2

|p3|
e−|

P2
3

2m−µ0|/T

T
(E(2) · B)e3
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About the relation

〈jµA〉 = −εµν〈jVν 〉 ⇔ γµγ5 = −εµνγν

We can use the above relation due to:

1 Electric field associated to longitudinal mode is ‖ B.
2 In the LLL→ n = 0⇔ p⊥ ≡ 0.
3 Condition eB � T 2, µ2⇒ confine the system to the LLL.
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About the 2-dimension nature of LLL.

Dirac equation

[γν(∂ν + ieAextν ) +m]G(x, x′|Aext) = δ(x− x′)

Analytic prolongation (p0 → −ip4 + µ) of the time Fourier
transformation of G(x, x′|Aext)

G(p4,x,x′|Aext) = − 1

2π2

∑
p4

∫
dp2dp3[(p4 + iµ)2 + ε2

q]
−1

×M(p3, p4, n, ζ, ζ
′)ei[p2(x2−x′

2)+p3(x3−x′
3)]
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Where the matrix M(p3, p4, n, ζ, ζ
′) is:

Hn−1,n−1(x) 0 −Dn−1,n−1 −En−1,n

0 Hn,n(x) −En−1,n Dn,n

Dn−1,n−1 −En−1,n Hn−1,n−1(−x) 0
−En−1,n −Dn,n 0 Hn,n(−x)



Ek,k′ = ∓i(2neB)
1
2φk(ζ)φk′(ζ

′)

Dk,k′ = ±p3φk(ζ)φk′(ζ
′)

Hk,k′(x) = Hk,k′(ip4 − µ) = (m+ ip4 − µ)φk(ζ)φk′(ζ
′)

Hermite functions multiply by (eB)1/4

φn(ζ) =
(eB)

1
4

π
1
4 2

n
2 (n!)

1
2

e
ζ2

2 Hn(ζ), ζ =
√
eB(x1 + x0)
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In the LLL, the matrix M(p3, p4, 0, ζ) =


0 0 0 0
0 (m− ip4 + µ) 0 ±p3

0 0 0 0
0 ∓p3 0 (m+ ip4 − µ)



M(p3, p4, 0, ζ)] ⇔ D2×2

Con µ = 0

det[D] = 0 ⇔ m2 + p2
3 = p2

0

⇒ movement in a direction⇔ (1 + 1) dimensions
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Helicity and the direction ~p.

Dirac hamiltonian HD and spin operator ~S

HD = ~α · ~p+ βm, β = γ0, ~α = γ0~γ

~S =
i

4
~γ × ~γ

Commutator between HD and spin projection in the direction ~n

[HD, ~S · ~n] = i(~p× ~n) · ~α

[HD, ~S · ~n] = 0 ,if ~p ‖ ~n⇒ Helicity⇒ movement constant .

[HD, ~S · ~n] 6= 0 ,otherwise.
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axial anomaly

∂µj
µ
A = − e2

16π2
F̃µνFµν 6= 0

∂µj
µ
A =

e

π
E 6= 0, → (1 + 1) dimensions

∂µj
µ
A =

e2

2π2
E · B 6= 0, → (3 + 1) dimensions
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Anomaly relation in the limits µ→ 0 and T → 0 .

Anomaly relation for jµA in a magnetized medium of massive
particles

kµj
µ
A = β[mA(m) + C(m)]

e2

2π2
E · B

A(m) = (2πm/e)

∞∑
n=0

αnSn, C(m) = 8πB

∞∑
n=1

nSn

Dependence with µ and T

Sn(µ, T ) =
{θ(z1)∆N + θ(−4ε2

n,0 − z1)∆H}
Λ
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Conclusions

In the limit µ→ 0, with T 6= 0

Sn(µ = 0, T 6= 0) 6= 0, ⇒ kµj
µ
A(µ = 0, T 6= 0) 6= 0

In the limit T → 0, with µ 6= 0

Sn(µ 6= 0, T 6= 0) 6= 0, ⇒ kµj
µ
A(µ 6= 0, T 6= 0) 6= 0

In the limit T → 0 and µ→ 0

Sn(µ→ 0, T → 0) = − 2

Λ
6= 0, ⇒ kµj

µ
A(µ→ 0, T → 0) 6= 0

!!!Contribution of magnetized vacuum in a radiation field!!!
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