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Overview

@ Aim: Derive the theory of gravity from first principles along the line of
non-Abelian gauge theories.

@ Method: Use the canonical transformation theory in order to ensure
that the action principle is maintained. Here, we restrict the
calculations to scalar and vector boson fields.

© Key results:

e the connection coefficients are the gauge fields of gravity

e the coupling terms of fields and gauge fields are uniquely defined

e the Hamiltonian for spacetime dynamics must be at least quadratic in
the canonical momenta of the gauge fields

e spin fields contribute with additional source terms to the spacetime
dynamics
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Minimal Set of Basic Principles

© Action Principle: The system dynamics follows from the variation of

its action S, namely 45 2o

@ Special Principle of Relativity: The action integrand must be
form-invariant (symmetric) under (global) Lorentz transformations.

© General Principle of Relativity: The action integrand must be
form-invariant (symmetric) under local Lorentz transformations.

@ Gauge Principle: Promoting a global symmetry of a given system to a
local symmetry by adding appropriate gauge fields yields a physically
meaningful theory.
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Hamiltonian action principle for static spacetime

Action principle for a system of real scalar and vector fields
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with | |
65 =0, 66|,p = 0au|,p = 0.

Calculus of variations: §5 = 0 holds exactly for the solutions of the

Covariant canonical field equations
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with /=g d*x the invariant volume form and the tensor densities
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Zax(x) denotes the system’s metric and g the metric's determinant.
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Action principle for a system of real scalar and vector fields
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with /=g d*x the invariant volume form and the tensor densities
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Zax(x) denotes the system’s metric and g the metric's determinant.

Covariant canonical field equations

a9 oA 0a, _ OH  Ogn _  OH

oxt — OFmn’ Oxt — Opvm’ OxH kv

oo B _@ op L 87_"[ al';u)\a B 87:[ _ e

Oxa ¢’ ox® — da,’ ox* —  Ogy 2




Basics: Action Principle, Principles of Relativity, Gauge Principle

Example: Maxwell Hamiltonian in a Riemannian spacetime

Maxwell Hamiltonian in arbitrary spacetime

Example

For the Maxwell Hamiltonian in a Riemannian space with metric g,,(x)

; ey Bat8By o
Hn = — 5P B “L_Z" +a(x)asg*’V=g, P =-p™

the field equations emerge for a torsion-free spacetime and g,,.c = 0 as
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Canonical transformations under dynamic spacetime
Requirement of form-invariance for the action principle

For a gauge theory that includes a general mapping of spacetime x — X,
we need the connection coefficients 7"(15 as additional dynamic quantities

Condition for canonical transformations under a dynamical spacetime

> / ( 58 TP 020 | forg0Bar 4 atp N 5,0 >d4
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form-invariant under general spacetime transformations.
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@ The integrands must be world scalar densities in order to be
form-invariant under general spacetime transformations.
@ ~~ The partial derivatives must be promoted to covariant derivatives.
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Canonical gauge formalism Canonical transformations under dynamic spacetime

Requirement of form-invariance for the action principle

For a gauge theory that includes a general mapping of spacetime x — X,
we need the connection coefficients 7”(15 as additional dynamic quantities

Condition for canonical transformations under a dynamical spacetime

o5 0a O8ar - aep 0" . 9Fp
aﬁ o | 7argYBa alf af 2 4
s /( 8X5+ OxPB +k 8x5+q" OxPB HJF@X»‘3 G

~ 5 OO 0A. oG, or’ .
— I—I/J7 Pa/j' Ka)\ﬁ a\ alp 045 . / d4X
R/< axr TP axs K o + " g

v

@ The integrands must be world scalar densities in order to be
form-invariant under general spacetime transformations.

@ ~~ The partial derivatives must be promoted to covariant derivatives.
@ ~~ The connection coefficients «y, [ must be the gauge quantities.
° .7:"5 is the generating function of the canonical transformation x — X.
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Canonical gauge formalism Canonical transformations under dynamic spacetime

General CT rules under dynamic spacetime

General rules for a generating function of type F4 (11,6, P, a, K, g, Q,7, x)

o O i — OFE OXH | 0x
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" < K o
a0 = 522 OTag = (?]:jsv aaxn %
Oy if oQy X
x| _ d(x%...,x3%) e ﬁ+aﬁ§ x
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Canonical gauge formalism Form-invariant action functional — gauge Hamiltonian

Gauge Hamiltonian

The generating function .7:"5 is devised to define the required mappings

Ix“ Ix® Ox*
®(X) = ¢(x); Au(X) = aa(x)ﬁ, Guu(X) = ga/\(X)Wm
ox" OxT X" 92xE  OX"®
e (X)) =A% _
04,3( ) ’YnT(X)axtanﬁ E +8X“8Xﬁ OxE
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Gauge Hamiltonian
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and for the Hamiltonians.
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Canonical gauge formalism Form-invariant action functional — gauge Hamiltonian

Gauge Hamiltonian

The generating function .7:“5 is devised to define the required mappings

ox“ ox® Ox*
CD(X) = ¢(X), Au(X) = aa(X)Ma Gl/u(X) = go&\(x) OXV m
OxM Ox™ OX" 0?x5 X~
M .s(X)=1"% :
as(X) = 7 () 5xa 5B axE T OXOXP Ox
~ .7:“25 simultaneously defines the rules for the conjugate fields 7, p, k, §
and for the Hamiltonians.
We thus encounter the “gauge” Hamiltonian Hq (after “some algebra”!)

o =H+ (p*Pac + k¥ gor + B ) oo

9,.)/77 a Y
~ 13 ) B
%qnafﬂ ( 8XZ axz 77—04[7’ '7717'5 77—045 ’YT]TB

The Hamiltonian 7'2/(; has the same form in the transformed fields.



Canonical gauge formalism Form-invariant action functional — gauge Hamiltonian

Generally invariant action principle

Inserting the Hamiltonians H, 7—N[’G into the above action functionals yields
Gauged action

_ ~ . 7a\ 1~ AT
> _/R (#8.5 + 5 a0 + k2 gang — 33, r"e5 — ) d*x

_ B D YZeP 1A )/ 4
=/ (P05 + PP Agg + ROV Gorg — 3Q,°PR" g — ') d*X.
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Canonical gauge formalism Form-invariant action functional — gauge Hamiltonian

Generally invariant action principle

Inserting the Hamiltonians H, 7—N[’G into the above action functionals yields
Gauged action

> :/R (7?/8(/5:5 +p*? da;8 t+ ke 8axp — %anagﬁrnaﬁﬁ - ﬁ) d'x

=/, <|=|f3¢;5 + PP A + K G — 1Q,°6PR7 o — ﬁ/) 4 X

@ The partial derivatives of the fields ¢, a,, and g, in the original
action functional are indeed converted into covariant derivatives.
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Canonical gauge formalism Form-invariant action functional — gauge Hamiltonian

Generally invariant action principle

Inserting the Hamiltonians H, 7—N[’G into the above action functionals yields

Gauged action
S :/R (#2615 + B aus + K garg — 13,077 o — ) dx

~ " o . Ny
= R’ (n’B¢;,8 + pobB Ang + K B Gorg — §Q77<)c§/3,1:\>’f7a€6 _ H/) d4x.

@ The partial derivatives of the fields ¢, a,, and g, in the original
action functional are indeed converted into covariant derivatives.

@ In contrast, the partial derivatives of the non-tensorial quantities ’}/7701g
cannot be converted into covariant derivatives.

@ Miraculously, the terms of the calculated gauge Hamiltonians H, 75[’(;
complement these derivatives to the Riemann curvature tensors r, R.

@ The integrands are now world scalar densities of the same form and

thus comply with the general principle of relativity.
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“Free gauge field" Hamitonian
The “free” gauge field Hamiltonian Hpy,

As common to all gauge theories,

o the gauge formalism yields the coupling terms of the fields of the
given system to the gauge fields,

@ the gauge formalism does not provide the Hamiltonian describing the
dynamics of the “free” gauge fields,
here: the dynamics of the fyfaﬁ (x) in classical vacuum,

@ the Hamiltonian 7—~tDyn for the dynamics of the “free” gauge fields
must be added “by hand” based on physical reasoning,

o the “free gauge field Hamiltonian” 7:[Dyn accounts for the residual
indeterminacy of the gauge theory, here: the gauge theory of gravity.

Final action functional

>= /R (frﬁ¢;ﬁ + p** do;p t koA 8aXiB — %anafﬁrn B H— ﬁDyn) d'x

af

with a form-invariant Hamiltonian Hpyw (g, k,d) = Hpy (G, K, Q).
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Canonical gauge formalism Coupled set of canonical field equations

Canonical field equations for given % and 7:[Dyn

oH .5 oH

bin = S 7 ;5:—8—(25—1—27"7650‘5&
a”;“:%’ ’N’Vﬂ:ﬁz_ngrzf’yﬁsaﬂa
Bexip = Oow o O+ Hom) (7 + #om) + 2k Mg
T gkow 4 Ogex ga
_Pow _ OHpm . e 5= —a, — 2kPgy, 1 5,5,

2 _aanﬁf\u’ "
+ 25,50




Canonical gauge formalism Coupled set of canonical field equations

Canonical field equations for given H and 7:[Dyn

oH .8
¢;,u — ﬁ, T :
oH p

v, = aﬁyua
OHp [ EAB
e 1 al}f’\}:’ k ;
o _ 0o exs
2 ag]nﬁf\u’ no

B _8aV

_on
9

OH

27 /Bsaﬁa

+2p vBg O‘ﬂa
0 (7:2 + 7:lDyn>
- 08ex

+25,s%,

=+ 2};£>\65 a[ga

= = pa, — 2kPg, + g, P05,

v

@ Throughout tensor equations ~» form-invariant in any reference frame.
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Canonical gauge formalism Coupled set of canonical field equations

Canonical field equations for given % and 7—~£Dyn

oH .5 oH

¢;u=87"m’ m ;5:_8_¢+27~T65a5a
oH B oH .
ay;p‘:%’ pV ;/B:—aay+2p’/ﬁsaﬁa
_ Moy M 0 (H + %Dy“> YA
e 1 8/}5’\” ) B Og@\ Ba
" ~
Fex OHp ~ €A - 7 ~
B 52“ = 5= £K2= qn5 B:,B = - pg/\an - 2kﬁ§)\gﬂn + qnfﬁas)\ﬁa
gy
+ 25,757,

v

@ Throughout tensor equations ~» form-invariant in any reference frame.
@ Hpyn must be postulated for the set of equations to be closed.
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Canonical gauge formalism Coupled set of canonical field equations

Canonical field equations for given % and 7—~£Dyn

oH .5 OH .5
¢;#:%7 v 'B:—%+27T65 BO‘
o 87:[ ,_,1,6 . 87:[ "'V/B a
au;u—Wa P ;/3——831/-1-2/3 Sﬁa
Gy = D e 0L+ Hom) (7 + o) + 2k s
T ke 4 Ogex e
CMow  Fom . e

~ EN 7 BEN ~ A
>~ o ow N :ﬁ:_pé a”_Zkﬁggﬁn—i_qnéﬂas B
gy

+ 25,57,

o

@ Throughout tensor equations ~» form-invariant in any reference frame.
@ Hpyn must be postulated for the set of equations to be closed.
@ The torsion (s)‘ﬁa # 0) and metricity (gex;, # 0) may be non-zero.
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Canonical gauge formalism Coupled set of canonical field equations

Canonical field equations for given % and 7—~£Dyn

ot .8 O | .5
¢;u:%7 W;B:—%—|—27T 5“8
oH B oH .
i = ppon p :ﬁ:_aa,,HpVBsaﬂa
g, = LD pew O\ + o) <H +HDyn> + 2k s
AT ke A Dgex oe
r' OH. .
_Tow _ 9oy o8 e opper 5 EBagA
2~ oagow s T PTan = 2K e 8,
+ 25,5,

@ Throughout tensor equations ~» form-invariant in any reference frame.
@ Hpyn must be postulated for the set of equations to be closed.

@ The torsion (s)‘ﬁa # 0) and metricity (gex;, # 0) may be non-zero.

@ Spin-1 fields yield additional source terms beyond the Einstein gravity.
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Canonical gauge formalism Example: purely quadratic “free gauge field” Hamiltonian

Discussion of Hpyy,

@ For U(1) and SU(N) (Yang-Mills) gauge theories, Hpyy is uniquely
given by a purely quadratic momentum term (Maxwell Hamiltonian!).
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Canonical gauge formalism Example: purely quadratic “free gauge field” Hamiltonian

Discussion of Hpyy,

@ For U(1) and SU(N) (Yang-Mills) gauge theories, Hpyy is uniquely
given by a purely quadratlc momentum term (Maxwell Hamiltonian!).

@ For geometrodynamics, ’HDyn must be at least quadratic in g, he o
get a well-defined and non-trivial equation for the Riemann tensor r.

@ The simplest choice is to postulate f[Dympost as purely quadratic in @
and not depending on k, which yields the metricity condition 8agx =0

- . - 1 _
Dyngeest = 71;g1 qna£ﬁqan Ag&gﬁ/\\/__g, g1 . coupling constant J

For the classical vacuum (7 = 0), the set of canonical equations reduces to

raﬂﬂy raﬁf& 5{ aBTU - ( {Ba )\ o 2r 56)\ aﬁoz)_)\ —0. J

~ This is a set of homogeneous second-order equations for 7/\[3&-

~ The solutions can then be inserted into the first-order equations for g,z.
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Example: purely quadratic “free gauge field” Hamiltonian
Hpyn purely quadratic in g
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we find with the integration constants m and A

2m 2m -1
g00:—<1—r—§/\r2), g11:<1—r—§/\f2> :

~» The quadratic Riemann tensor equation yields the Schwarzschild-

de Sitter metric of the Einstein equation rn)S — %5% r, ¢+ 6,5] A=0.
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quadratic in the canonical momenta § of the gauge fields ~

e spin fields contribute with additional source terms to the spacetime
dynamics, which is beyond the Einstein theory.

@ Actual work:

e Discussion of other options for ’z':lDyn: adding a term linear in §
o Rework the theory for spin-/, fields using the tetrad formalism.
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fields v — but there are still various options to define Hpyy,.

@ For the classical vacuum, the metrics emerging from the quadratic
Hpyn agree with those of the Einstein theory (Schwarzschild-
De Sitter, Kerr-De Sitter).

@ Spin fields contribute with additional source terms to the spacetime
dynamics, which are not compatible with the Einstein theory.
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