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Basics: Action Principle, Principles of Relativity, Gauge Principle

Overview

1 Aim: Derive the theory of gravity from first principles along the line of
non-Abelian gauge theories.

2 Method: Use the canonical transformation theory in order to ensure
that the action principle is maintained. Here, we restrict the
calculations to scalar and vector boson fields.

3 Key results:

the connection coefficients are the gauge fields of gravity
the coupling terms of fields and gauge fields are uniquely defined
the Hamiltonian for spacetime dynamics must be at least quadratic in
the canonical momenta of the gauge fields
spin fields contribute with additional source terms to the spacetime
dynamics
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Basics: Action Principle, Principles of Relativity, Gauge Principle

Minimal Set of Basic Principles

1 Action Principle: The system dynamics follows from the variation of
its action S, namely δS != 0.

2 Special Principle of Relativity: The action integrand must be
form-invariant (symmetric) under (global) Lorentz transformations.

3 General Principle of Relativity: The action integrand must be
form-invariant (symmetric) under local Lorentz transformations.

4 Gauge Principle: Promoting a global symmetry of a given system to a
local symmetry by adding appropriate gauge fields yields a physically
meaningful theory.
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Basics: Action Principle, Principles of Relativity, Gauge Principle Action Principle for static spacetime

Hamiltonian action principle for static spacetime
Action principle for a system of real scalar and vector fields

S =
∫

R

(
πα

∂φ

∂xα + pβα ∂aβ
∂xα −H(πµ, φ, pνµ, aν , xµ)

)
d4x

with
δS != 0, δφ

∣∣
∂R = δaµ

∣∣
∂R

!= 0.

Calculus of variations: δS = 0 holds exactly for the solutions of the
Covariant canonical field equations

dqi
dt = ∂H

∂pi → ∂φ

∂xµ = ∂H
∂πµ

,
∂aν
∂xµ = ∂H

∂pνµ
dpi

dt = −∂H
∂qi

→ ∂πα

∂xα = −∂H
∂φ

,
∂pνα
∂xα = − ∂H

∂aν
de
dt = ∂H

∂t

∣∣∣∣
expl

→
∂T α

µ

∂xα = ∂H
∂xµ

∣∣∣∣
expl

, T α
µ = E-M tensor
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Basics: Action Principle, Principles of Relativity, Gauge Principle Action Principle for dynamic spacetime

Hamiltonian action principle for dynamic spacetime
Action principle for a system of real scalar and vector fields

S =
∫

R

(
π̃α

∂φ

∂xα + p̃βα ∂aβ
∂xα + k̃αλβ ∂gαλ

∂xβ − H̃(π̃, φ, p̃, a, k̃, g,x)
)

d4x

with
√
−g d4x the invariant volume form and the tensor densities

π̃µ = πµ
√
−g , p̃µν = pµν

√
−g , k̃µλν = kµλν

√
−g , H̃ = H

√
−g .

gαλ(x) denotes the system’s metric and g the metric’s determinant.

Covariant canonical field equations
∂φ

∂xµ = ∂H̃
∂π̃µ

,
∂aν
∂xµ = ∂H̃

∂p̃νµ ,
∂gνλ
∂xµ = ∂H̃

∂k̃νλµ

∂π̃α

∂xα = −∂H̃
∂φ

,
∂p̃να
∂xα = − ∂H̃

∂aν
,

∂k̃νλα
∂xα = − ∂H̃

∂gνλ
= −1

2 T̃ λν .
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Basics: Action Principle, Principles of Relativity, Gauge Principle Example: Maxwell Hamiltonian in a Riemannian spacetime

Maxwell Hamiltonian in arbitrary spacetime

Example
For the Maxwell Hamiltonian in a Riemannian space with metric gνµ(x)

H̃M = −1
4 p̃αβ p̃ξη gαξgβη√

−g + jα(x) aβ gαβ
√
−g , p̃µν = −p̃νµ,

the field equations emerge for a torsion-free spacetime and gνµ;ξ = 0 as

∂aν
∂xµ = ∂H̃M

∂p̃νµ = −1
2pνµ ⇒ pνµ = ∂aµ

∂xν −
∂aν
∂xµ

∂p̃να
∂xα = −∂H̃M

∂aν
= −jν(x)

√
−g ⇒ pνα;α = −jν(x)

Tµν = 2√
−g

∂H̃M
∂gνµ

= −pµαpνα − jνaµ − jµaν + gµν
(

1
4pαβpαβ + jαaα

)

6 / 17



Canonical gauge formalism Canonical transformations under dynamic spacetime

Requirement of form-invariance for the action principle
For a gauge theory that includes a general mapping of spacetime x 7→ X ,
we need the connection coefficients γηαξ as additional dynamic quantities

Condition for canonical transformations under a dynamical spacetime

S =
∫

R

(̃
πβ

∂φ

∂xβ + p̃αβ ∂aα
∂xβ + k̃αλβ ∂gαλ

∂xβ + q̃ αξβ
η

∂γηαξ
∂xβ − H̃+ ∂F̃β2

∂xβ

)
d4x

=
∫

R′

(
Π̃β ∂Φ

∂Xβ
+ P̃αβ ∂Aα

∂Xβ
+ K̃αλβ ∂Gαλ

∂Xβ
+ Q̃ αξβ

η

∂Γηαξ
∂xβ − H̃

′
)

d4X .

The integrands must be world scalar densities in order to be
form-invariant under general spacetime transformations.
 The partial derivatives must be promoted to covariant derivatives.
 The connection coefficients γ, Γ must be the gauge quantities.
F̃β2 is the generating function of the canonical transformation x 7→ X .
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Canonical gauge formalism Canonical transformations under dynamic spacetime

General CT rules under dynamic spacetime

General rules for a generating function of type F̃µ2
(
Π̃, φ, P̃, a, K̃ , g , Q̃, γ, x

)
π̃µ = ∂F̃µ2

∂φ
δµνΦ = ∂F̃κ2

∂Π̃ν

∂Xµ

∂xκ

∣∣∣∣ ∂x
∂X

∣∣∣∣
p̃νµ = ∂F̃µ2

∂aν
δµβAα = ∂F̃κ2

∂P̃αβ

∂Xµ

∂xκ

∣∣∣∣ ∂x
∂X

∣∣∣∣
k̃ξζµ = ∂F̃µ2

∂gξζ
δµβGαλ = ∂F̃κ2

∂K̃αλβ

∂Xµ

∂xκ

∣∣∣∣ ∂x
∂X

∣∣∣∣
q̃ ijµ

k = ∂F̃µ2
∂γk

ij
δµν Γηαξ = ∂F̃κ2

∂Q̃ αξν
η

∂Xµ

∂xκ

∣∣∣∣ ∂x
∂X

∣∣∣∣
∣∣∣∣ ∂x
∂X

∣∣∣∣ := ∂
(
x0, . . . , x3)

∂ (X 0, . . . ,X 3) H̃′ =

H̃+ ∂F̃α2
∂xα

∣∣∣∣∣
expl

 ∣∣∣∣ ∂x
∂X

∣∣∣∣
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Canonical gauge formalism Form-invariant action functional — gauge Hamiltonian

Gauge Hamiltonian
The generating function F̃µ2 is devised to define the required mappings

Φ(X ) = φ(x), Aµ(X ) = aα(x) ∂xα
∂Xµ

, Gνµ(X ) = gαλ(x) ∂xα
∂X ν

∂xλ
∂Xµ

and
Γκαβ(X ) = γξητ (x) ∂xη

∂Xα

∂x τ
∂Xβ

∂Xκ

∂x ξ + ∂2x ξ
∂Xα∂Xβ

∂Xκ

∂x ξ .

 F̃β2 simultaneously defines the rules for the conjugate fields π̃, p̃, k̃, q̃
and for the Hamiltonians.

We thus encounter the “gauge” Hamiltonian H̃G (after “some algebra”!)

H̃G = H̃+
(
p̃αβaξ + k̃αλβgξλ + k̃λαβgλξ

)
γξαβ

+ 1
2 q̃ αξβ
η

(
∂γηαξ
∂xβ +

∂γηαβ
∂x ξ + γταβγ

η
τξ − γ

τ
αξγ

η
τβ

)

The Hamiltonian H̃′G has the same form in the transformed fields.
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Canonical gauge formalism Form-invariant action functional — gauge Hamiltonian

Generally invariant action principle
Inserting the Hamiltonians H̃G, H̃′G into the above action functionals yields
Gauged action

S =
∫

R

(
π̃βφ;β + p̃αβ aα;β + k̃αλβ gαλ;β − 1

2 q̃ αξβ
η rηαξβ − H̃

)
d4x

=
∫

R′

(
Π̃βΦ;β + P̃αβ Aα;β + K̃αλβ Gαλ;β − 1

2Q̃ αξβ
η Rη

αξβ − H̃
′
)

d4X .

The partial derivatives of the fields φ, aµ, and gνµ in the original
action functional are indeed converted into covariant derivatives.
In contrast, the partial derivatives of the non-tensorial quantities γηαξ
cannot be converted into covariant derivatives.
Miraculously, the terms of the calculated gauge Hamiltonians H̃G, H̃′G
complement these derivatives to the Riemann curvature tensors r , R.
The integrands are now world scalar densities of the same form and
thus comply with the general principle of relativity.
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action functional are indeed converted into covariant derivatives.
In contrast, the partial derivatives of the non-tensorial quantities γηαξ
cannot be converted into covariant derivatives.
Miraculously, the terms of the calculated gauge Hamiltonians H̃G, H̃′G
complement these derivatives to the Riemann curvature tensors r , R.
The integrands are now world scalar densities of the same form and
thus comply with the general principle of relativity.

10 / 17



Canonical gauge formalism Form-invariant action functional — gauge Hamiltonian

Generally invariant action principle
Inserting the Hamiltonians H̃G, H̃′G into the above action functionals yields
Gauged action

S =
∫

R

(
π̃βφ;β + p̃αβ aα;β + k̃αλβ gαλ;β − 1

2 q̃ αξβ
η rηαξβ − H̃

)
d4x

=
∫

R′

(
Π̃βΦ;β + P̃αβ Aα;β + K̃αλβ Gαλ;β − 1

2Q̃ αξβ
η Rη

αξβ − H̃
′
)

d4X .

The partial derivatives of the fields φ, aµ, and gνµ in the original
action functional are indeed converted into covariant derivatives.
In contrast, the partial derivatives of the non-tensorial quantities γηαξ
cannot be converted into covariant derivatives.
Miraculously, the terms of the calculated gauge Hamiltonians H̃G, H̃′G
complement these derivatives to the Riemann curvature tensors r , R.
The integrands are now world scalar densities of the same form and
thus comply with the general principle of relativity.

10 / 17



Canonical gauge formalism Form-invariant action functional — gauge Hamiltonian

Generally invariant action principle
Inserting the Hamiltonians H̃G, H̃′G into the above action functionals yields
Gauged action

S =
∫

R

(
π̃βφ;β + p̃αβ aα;β + k̃αλβ gαλ;β − 1

2 q̃ αξβ
η rηαξβ − H̃

)
d4x

=
∫

R′

(
Π̃βΦ;β + P̃αβ Aα;β + K̃αλβ Gαλ;β − 1

2Q̃ αξβ
η Rη

αξβ − H̃
′
)

d4X .

The partial derivatives of the fields φ, aµ, and gνµ in the original
action functional are indeed converted into covariant derivatives.
In contrast, the partial derivatives of the non-tensorial quantities γηαξ
cannot be converted into covariant derivatives.
Miraculously, the terms of the calculated gauge Hamiltonians H̃G, H̃′G
complement these derivatives to the Riemann curvature tensors r , R.
The integrands are now world scalar densities of the same form and
thus comply with the general principle of relativity.

10 / 17



Canonical gauge formalism “Free gauge field” Hamiltonian

The “free” gauge field Hamiltonian H̃Dyn

As common to all gauge theories,
the gauge formalism yields the coupling terms of the fields of the
given system to the gauge fields,
the gauge formalism does not provide the Hamiltonian describing the
dynamics of the “free” gauge fields,
here: the dynamics of the γξαβ (x) in classical vacuum,
the Hamiltonian H̃Dyn for the dynamics of the “free” gauge fields
must be added “by hand” based on physical reasoning,
the “free gauge field Hamiltonian” H̃Dyn accounts for the residual
indeterminacy of the gauge theory, here: the gauge theory of gravity.

Final action functional

S =
∫

R

(
π̃βφ;β + p̃αβ aα;β + k̃αλβ gαλ;β − 1

2 q̃ αξβ
η rηαξβ − H̃ − H̃Dyn

)
d4x

with a form-invariant Hamiltonian H̃Dyn
(
g , k̃, q̃

)
= H̃Dyn

(
G , K̃ , Q̃

)
.
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Canonical gauge formalism Coupled set of canonical field equations

Canonical field equations for given H̃ and H̃Dyn

φ;µ = ∂H̃
∂π̃µ

, π̃ β;β = −∂H̃
∂φ

+ 2π̃ βs αβα

aν;µ = ∂H̃
∂p̃νµ , p̃νβ;β = − ∂H̃

∂aν
+ 2p̃ νβs αβα

gξλ;µ = ∂H̃Dyn

∂k̃ξλµ
, k̃ ξλβ;β = −

∂
(
H̃+ H̃Dyn

)
∂gξλ

+ 2k̃ ξλβs αβα

−
rηξλµ

2 = ∂H̃Dyn

∂q̃ ξλµ
η

, q̃ ξλβ
η ;β = − p̃ ξλaη − 2k̃ βξλgβη + q̃ ξβα

η s λβα

+ 2q̃ ξλβ
η sαβα

Throughout tensor equations form-invariant in any reference frame.
H̃Dyn must be postulated for the set of equations to be closed.
The torsion (s λβα 6= 0) and metricity (gξλ;µ 6= 0) may be non-zero.
Spin-1 fields yield additional source terms beyond the Einstein gravity.
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Canonical gauge formalism Example: purely quadratic “free gauge field” Hamiltonian

Discussion of H̃Dyn

For U(1) and SU(N) (Yang-Mills) gauge theories, HDyn is uniquely
given by a purely quadratic momentum term (Maxwell Hamiltonian!).
For geometrodynamics, H̃Dyn must be at least quadratic in q̃ ξβα

η to
get a well-defined and non-trivial equation for the Riemann tensor r .
The simplest choice is to postulate H̃Dyn,post as purely quadratic in q̃
and not depending on k̃, which yields the metricity condition gαβ;λ = 0

H̃Dyn,post = 1
4g1 q̃ αξβ

η q̃ ητλ
α gξτgβλ

1√
−g , g1 : coupling constant

For the classical vacuum (H̃ ≡ 0), the set of canonical equations reduces to

rαβτη rαβτξ − 1
4δ
ξ
η rαβτσ rαβτσ −

(
r ξβα
η s λβα − 2r ξβλ

η sαβα
)

;λ
= 0.

 This is a set of homogeneous second-order equations for γ λβα .
 The solutions can then be inserted into the first-order equations for gαβ.
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Canonical gauge formalism Example: purely quadratic “free gauge field” Hamiltonian

H̃Dyn purely quadratic in q̃
For a torsion-free spacetime (s λβα ≡ 0), the last equation simplifies to

rαβτη rαβτξ − 1
4δ
ξ
η rαβτσ rαβτσ = 0.

With the Schwarzschild ansatz for the metric of a static and spherically
symmetric spacetime

gµν =


−e2κ(r) 0 0 0

0 e2λ(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 ,
we find with the integration constants m and Λ

g00 = −
(

1− 2m
r −

1
3 Λr2

)
, g11 =

(
1− 2m

r −
1
3 Λr2

)−1
.

 The quadratic Riemann tensor equation yields the Schwarzschild-
de Sitter metric of the Einstein equation r ξ

η − 1
2δ
ξ
η r α
α + δξη Λ = 0.
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Canonical gauge formalism Example: purely quadratic “free gauge field” Hamiltonian

Outlook

1 Key results:

the connection coefficients γ are the gauge fields of gravity
the coupling terms of fields and gauge fields are uniquely defined
the gauge procedure truncates with the introduction of γ — no infinite
hierarchy of gauge fields and pertaining transformation rules occurs
the Hamiltonian H̃Dyn for the “free gauge fields” must be at least
quadratic in the canonical momenta q̃ of the gauge fields γ
spin fields contribute with additional source terms to the spacetime
dynamics, which is beyond the Einstein theory.

2 Actual work:

Discussion of other options for H̃Dyn: adding a term linear in q̃
Rework the theory for spin-1/2 fields using the tetrad formalism.
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Conclusions

Conclusions

Gauge theories are most naturally formulated as canonical
transformations. This automatically ensures the action principle to
be maintained.
The connection coefficients γ are the gauge fields of gravity.
The gauge theory of gravity is uniquely determined on the basis of the
action principle and the general principle of relativity up to the
postulation of the Hamiltonian H̃Dyn of the “free” gauge fields.
H̃Dyn must be at least quadratic in the momenta q̃ of the gauge
fields γ — but there are still various options to define H̃Dyn.
For the classical vacuum, the metrics emerging from the quadratic
H̃Dyn agree with those of the Einstein theory (Schwarzschild-
De Sitter, Kerr-De Sitter).
Spin fields contribute with additional source terms to the spacetime
dynamics, which are not compatible with the Einstein theory.
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