

News from the Pierre Auger Observatory

Lukas Nellen, for the Pierre Auger Collaboration

ICN-UNAM

lukas@nucleares.unam.mx

Ultra-High Energy Cosmic Rays

- Energies above
 10¹⁸ eV or 10¹⁹ eV
- Center of mass energies larger than that of the LHC Particle Physics
- Low flux: 1 per
 100 1000 km² per year
- Acceleration mechanism not known
- Sources not known

The Pierre Auger Collaboration

17 countries, ≈460 collaborators

Argentina – Australia – Bolivia – Brazil – Colombia – Czech Republic – France – Germany – Italy – Mexico – Netherlands – Poland – Portugal – Romania – Slovenia – Spain – United Kingdom – United States

The Auger Site

1660 surface detector stations, 1.5 km spacing

- * 1638 with water
- * 1635 with electronics
- 4 Fluorescence detector sites
- ***** 6 telescopes each
- * 24 telescopes in total
- * Full coverage of the surface array
- * Capability to detect stereo events
- * Quadruple events seen

Low Energy Extensions Radio Detectors

The Auger Site

A surface detector station

A surface detector station

Energy Determination

Energy Determination

Constant Intensity Cut

- Energy estimator depends on zenith
- Isotropy of Cosmic Rays
 Integrated constant
 Intensity
- Constant IntensityConstant Energy

- $S_{38} = S(1000) / CIC(sec(\theta))$ (signal at 38°)
 - 38° is the average zenith angle of events

Constant Intensity Cut

- Energy estimator depends on zenith
- Isotropy of Cosmic Rays
 Integrated constant
 Intensity
- Constant Intensity⇒ Constant Energy
- $S_{38} = S(1000) / CIC(sec(\theta))$ (signal at 38°)
 - 38° is the average zenith angle of events

Calibration curve

Calibration of different E estimators

Different Energy estimators

S₃₈: 1500m array $0 \le \theta \le 60^{\circ}$

S₃₅: 750m array $0 \le \theta \le 55^{\circ}$

N₁₉: Inclined showers

Combined spectrum

 Combine results from different techniques and detectors

Combined spectrum

 Combine results from different techniques and detectors

Spectral parameters:

$$E_{ankle} = 4.82 \pm 0.07 \pm 0.8 \text{ EeV}$$

 $E_{s} = 42.1 \pm 1.7 \pm 7.6 \text{ EeV}$

$$\gamma_1 = 3.29 \pm 0.02$$

 $\gamma_2 = 2.60 \pm 0.02$
 $\Delta \gamma = 3.14 \pm 0.02$

Combined fit

- Fit spectrum and X_{max}
- Uniform source model
- Free parameters:
 - \odot Injection spectral index γ
 - Cutoff rigidity R_{cut}
 - Spectrum normalization J₀
 - Mass fractions f_A (4 independent) H, He, N, Si, Fe
- Propagation
 - Photon interaction: CMB, EBL
 - Pair production
 - Photodisintegration

Fit result

1st minimum

Absence of Fe?

2nd minimum

Combined fit interpretation

- 1st minimum extended: hard to fix values
- 2nd minimum well reproduced
 Too many protons
- Preferred low Rcut: Cutoff in spectrum combined effect of propagation (GZK) and source cutoff
- Mixed composition: conflicts with pure proton, electron dip model

Anisotropy: Angular power spectrum

- Expand anisotropy: moments beyond monopole
- C_I: Spectral coefficients

$$\Delta(\mathbf{n}) = \sum_{\ell>0} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\mathbf{n}),$$

$$C_{\ell} = \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2 / (2\ell + 1)$$

Combined, global anisotropy estimator

$$D^{2} = \frac{1}{\ell_{\text{max}}} \sum_{\ell=1}^{\ell_{\text{max}}} \left(\frac{C_{\ell,\text{data}} - \langle C_{\ell,\text{iso}} \rangle}{\sigma_{\ell,\text{iso}}} \right)^{2}$$

Deviation from isotropy

Angular power spectrum

 \odot Clear deviation from isotropy for E > 8 EeV

Needlet analysis

- Needlet: localized wavelet on sphere
- Reproduces: deviation from isotropy for E > 8 EeV

Neutrino detection: Geometry of air showers

Neutrino detection: Geometry of air showers

Inclined showers

Hadronic shower:

Old, develops far from the detector

Neutrino shower:

Early region: young

Late region: old

Note:

1000g/cm² are

 ≈ 10 km at 90°

∴ Showers age along footprint

Inclined showers

Neutrino limits

Starts to limit some source models and approach cosmogenic flux predictions

FD photon discrimination

SD photon discrimination

Photon limit

Search for magnetic monopoles

Composition and X_{max}

- Both X_{max} and RMS(X_{max}) depend on
 - Energy: Number of generations in air shower
 - Cross-section, i.e., type of primary: $\sigma(\text{Fe-Air}) > \sigma(\text{p-Air})$

Composition

- Indication of a change from light to heavy as energy increases
- Interpretation requires models
- Observation not compatible with all models

Mixed composition at ankle: Spread of X_{max}

• Correlation Xmax-Signal cannot be fitted using pure composition ($\sigma(\ln A) = 0$)

Mixed composition at ankle: Spread of X_{max}

• Correlation Xmax-Signal cannot be fitted using pure composition ($\sigma(\ln A) = 0$)

Muon fraction

 Extracted fraction of muons and models disagree ⇒ rescale

Muon rescaling

Rescaling, using QGSJetII.04 proton as a baseline

Best fit muon and EM rescaling for different models and compositions

Risetime asymmetry

- Early vs late shower
 - Additional propagation for late part

Asymmetry example

E = 16.9 EeV $\theta = 15.7^{\circ}$

E = 7.7 EeV $\theta = 52^{\circ}$ more asym.

Early

Late

Models: lack of ability to fit

Neither model fits all data:

EPOS-LHC: fails X^µmax

QGSJETII: inconsistent (sec0)_{max} for different distances

Neutrino followup of Gravitational Wave events

GW neutrino flux limits

No neutrino candidates seen correlated with GW events

Auger Upgrade

- Lack of knowledge of composition limits the interpretation of results
- Separate determination of muonic and electro-magnetic signal is important

Goal:

- Determine origin of flux suppression: GZK or maximum energy of sources
- Search for proton component at the highest energies (> astronomy)
- \odot Study air showers and particle production at $E_{cms} > 70 TeV$

1) New SD-Electronics

Purpose:

- facilitate the readout of new electronic channels (PMTs)
- faster sampling (40→120 MHz) for better timing and µ-identification
- enhanced dynamic range (by adding a small PMT)
- faster data processing and more sophisticated triggers
- better data monitoring

- design is ready
- prototypes are now being produced

2b) Enhanced Muon Counting: ASCII

ASCII: Auger Scintillator for Composition II

Conclusions

- Auger operating since 2004, complete since 2008
- Robust, stable detector. Results:
 - Spectrum: ankle, suppression
 - Anisotropy: Evidence for dipole
 - Competitive neutrino limits
 - Photon limits rule out some models
 - Exotics: Monopoles, Lorentz violation
 - Muon counting, asymmetries: discrepancy with interaction models
 - LIGO/VIRGO GW neutrino followup (MoU)
 - Measured p-Air cross-section at 57 TeV
 - Non-cosmic ray science
- Upgrade planed
 - Extend science reach

