

Flexible, Ultra-Low Voltage, Fully Printed Radiation Detectors Based On Organic Semiconductors

Beatrice Fraboni

Department of Physics and Astronomy, Alma Mater Studiorum University of Bologna, Italy

beatrice.fraboni@unibo.it

ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

Motivation: Large area, flexible x-ray detectors

health diagnostic applications

Citizens security: "smart walls/pillars" Airport security

Radiotherapy

Cultural heritage

Why Organic Materials?

- flexible and light-weight materials
- solubility in organic solvents \rightarrow INKS!
- Iow cost printing techniques on flexible substrates (plastic);
 - large area applications -scalability
 - ✓ Biocompatibility

Human tissue-equivalent materials

Organic Solar Cells

© Sakurai Lab. / Someya-Sekitani Lab.

HD Sensors

Our goal #1: use Organic Single Crystals

ALMA MATER STUDI

investigate organic semiconducting single crystals grown from solution, for X-ray direct detection (i.e. the direct conversion of X ray photons into an electrical signal) at room temperature and in air

Iow degradation in air and light
Iarge band gap (i.e. low dark current)

 ✓ good charge transport/collection properties

A.Ciavatti et al., Adv. Mater., **27**, 7123 (2015) B.Fraboni et al., Adv. Funct. Mater., **26**, 2229 (2016)

DIRECT DETECTION

X ray beam

$$\downarrow \downarrow \downarrow \downarrow \downarrow$$

X photons to electrical charge carriers

Our goal #2: a printed pixelated matrix detector

Organic Semiconductor

Flexible organic radiation sensors

nm

Linear response to increasing dose rate

E = 10 keV

Sensitivity & Photoconductive gain model

Up to 180 nC/Gy (72000 nC/mGy cm³) @0.2V one order of magnitude higher than thick polymeric films or bulk organic single crystals (biased at several tens of

volts)

Room temperature and real-time operation

L. Basiricò et al. Nature Comm.7,13063 (2016)

2x2 pixel matrix: organic printed direct X-ray imager

Pixel size 5 mm Ultra-low voltage: 0.2V

pixel matrix organic detector

a) only pixels 1 and 4 are irradiatedb) only pixels 2 and 3 are irradiatedc) all the pixels are irradiated.

Radiation source :monochromatic synchrotron X-ray beam at 17 keV with a dose rate of 28.5 mGy/s.

i-FLEXIS (EU project): Integrated printed X-ray sensor system

Health Dosimeter: flexible largearea detectors - I

Health Dosimeter: flexible ring for surgeons detectors - I

- Reduce pixel size and pitch X-ray Imager
- Develop and investigate «fast» molecules/crystals

responding

organic

- Organic semiconductors can directly detect ionizing radiation (i.e. convert an X-photon into an electric signal)
- Novel flexible, large-area X-ray detectors based on organic semiconducting thin films, deposited from solution, operating at very low bias (0.2V).
- Printed 2x2 pixelated flexible matrix → possibility of fully printed organic X-ray imager
- High sensitivity, human tissue-equivalent material (very low X-ray absorption)

www.iflexis.eu

Organic Semiconductors group

@ UNIBO:

Research staff Dr. Andrea Ciavatti Dr. Laura Basiricò Dr. Tobias Cramer Dr. Maria Calienni Dr. Marta Tessarolo Dr. Isacco Gualandi Dr.Marco Marzocchi

Graduate students

Lorenzo Travaglini Vito Vurro Francesco DeCataldo Danilele Tambini Adriaan van der Feltz

Thank you for your attention