Smart*Light

X-ray imaging for science, art, industry and society

On behalf of Jom Luiten & Joris Dik

by Jan Visser

Revealing hidden

Dichromatic coronary angiography

Painting alterations

Oil transport in porous rocks

Bones

Varnishes on musical instruments

Desirable imaging capabilities

Phase contrast imaging (PCI):

- Higher contrast at lower dose in soft tissue
- 20-100 keV X-rays
- ≥1μm <u>coherence</u> length @ sample

Sample: soft tissue X-rays Spherical wave front Distorted wave front

K-edge subtraction imaging:

- 20-60 keV X-rays
- Monochromatic & tunable X-ray energies

Lung filled with Xenon:

PCI microtomography: The Fly...

Current lab X-ray sources

X-ray tubes:

- Broadband with few characteristic lines
- Reasonable photon flux but limited brilliance

Exciting development:

Liquid Ga source:

- 9.2 keV line (Ga K_{α})
- Very good brilliance
 2.6×10¹⁰ γ s⁻¹ mm⁻² mrad⁻²
- Unfortunately no wavelength tunability

Inverse Compton Scattering (soft) X-ray source

Brilliance

Inverse Compton Scattering (ICS)

- X-rays emitted in narrow cone, half angle γ^{-1}
- X-ray energy dependent on emission angle
- 1% energy spread if $\theta < 0.1 \gamma^{-1}$

Electron energy	Lorentz factor γ	X-ray wavelength	X-ray energy	Emission angle 0.1 γ ⁻¹
5 MeV	11	8.6 Å	1.4 keV	9 mrad
15 MeV	30	1.1 Å	11 keV	3 mrad
30 MeV	60	0.28 Å	44 keV	1.7 mrad
45 MeV	89	0.13 Å	98 keV	1.1 mrad

LINAC-based ICS sources: why?

- Cosion alimentative bearing & Inglier X-ray concrete

• Easier alignment, fast change of X-ray energy

Beam dump

• Deceleration option: strongly reduced shielding requirements

Will fit into sea container

LINAC-based ICS sources: Smart*Light

LINAC-based ICS sources: Smart*Light

Summary

- X-ray imaging with hard X-rays and brilliance comparable to synchrotron conditions are achievable at the lab scale.
- Inverse Compton Scattering Source for tunable, monochromatic and highly coherent X-ray beams in a compact setup
- Achievable brilliance several orders of magnitude higher than current lab sources in hard X-ray region
- Smart*Light combines advances in detector and accelerator technologies into a potentially movable lab-scale facility

