Ultra-Fast Hybrid Pixel Detector for Synchrotron Time-Resolved Pump-Probe Diffraction Experiments

Arkadiusz Dawiec^a, Felisa Berenguer^a, Alessandra Ciavardini^a, Eric Elkaim^a, Pierre Fertey^a, Paweł Gryboś^b, Claire Laulhe^a, Fabien Legrand^a, Piotr Maj^b, Fabienne Orsini^a, Robert Szczygieł^b

5.11.2016

^aSynchrotron SOLEIL, France ^bAGH-UST, Poland

SYNCHROTRON TECHNIQUES

SYNCHROTRON TECHNIQUES

SCIENTIFIC MOTIVATION - EXPERIMENT PRINCIPLE

GENERIC PUMP-PROBE SCHEME

TIME RESOLVED STUDIES AT SYNCHROTRON LIGHT SOURCES

- pump-probe method: exploiting pulsed synchrotron beam for studies of induced structural dynamics by a very short laser pulses (fs range)
- time resolution depends on:
 - temporal convolution of pump and probe pulses (~100 ps range)
 - precision of the probe relative delay Δt

A pixel detector dedicated and optimised for time-resolved studies

GATEABLE shutterless operation, count for few tens of ns **UNIFORMITY** of gating over whole pixel matrix - few ns (bunch spacing) **PROBE** Δt individually triggered fast counters (few) and fast readout **PHOTON FLUX** above 10⁹ photons/second per mm² **ENERGY** detection efficiency up to 40 keV \Rightarrow hybrid approach **DETECTION** several thresholds

SIZE small pixels (~20 \times 20 $\mu m^2)$ and large surface (~10 \times 10 cm²)

A pixel detector dedicated and optimised for time-resolved studies

GATEABLE shutterless operation, count for few tens of ns UNIFORMITY of gating over whole pixel matrix - few ns (bunch spacing) PROBE Δt individually triggered fast counters (few) and fast readout PHOTON FLUX above 10⁹ photons/second per mm² ENERGY detection efficiency up to 40 keV \Rightarrow hybrid approach DETECTION several thresholds SIZE small pixels (~20×20 µm²) and large surface (~10×10 cm²)

SUCH A DETECTOR DOES NOT EXIST YET

PRELIMINARY DEVELOPMENTS AT SYNCHROTRON SOLEIL

DETECTOR PROTOTYPE CONCEPT, MAIN PARAMETERS

- hybrid, photon counting detector
- moderate pixel size (75 µm pitch)
- \cdot ~32k pixels in matrix
- two discriminators, two counters
- frames rate up to 50 kHz
- \cdot min. counting time ~100 ns

\Downarrow

• implementation of the pump-probe-probe technique

PRELIMINARY MEASUREMENTS WITH PROTOTYPE DETECTOR

SYNCHROTRON FILLING MODE SCANS

mapping of the storage ring filling mode by scanning the delay between the detector trigger and the machine reference signal

good matching with expected profile

withstands high photon flux (>10⁸ ph sec⁻¹ mm⁻¹)

PUMP-PROBE-PROBE TESTS

simultaneous acquisition of images with two different Δt - probing the sample before

measured temporal uniformity ≈50 ns

SHORT TERM DEVELOPMENT

- \cdot design of a large demonstrator based on the current prototype
- validation with first scientific results

SUMMARY

SHORT TERM DEVELOPMENT

- \cdot design of a large demonstrator based on the current prototype
- validation with first scientific results

LONG TERM PROGRAM

- $\cdot\,$ development of a detector that fulfils all requirements
 - use innovative and emerging technologies: interconnections, 3D electronics, TSV, new sensor materials
- partnerships with academia and industry

SUMMARY

SHORT TERM DEVELOPMENT

- design of a large demonstrator based on the current prototype
- validation with first scientific results

LONG TERM PROGRAM

- · development of a detector that fulfils all requirements
 - use innovative and emerging technologies: interconnections, 3D electronics, TSV, new sensor materials
- partnerships with academia and industry

Thank you !

