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Why new BLM?

The hadron Intensity frontier Neutron sources
: : brightness vs pulse duration
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= New high intensity high power beam hadron accelerator
facilities under construction, as

LIPAC (125 mA cw D+) or ESS (62.5 mA, 4% dc H+)
= Any lost can imply damage
= Machine operability
= More down time due to cool-down before repairing.
= Aging of materials due to stray radiation
= Aging of the main magnets due to radiation in the high-losses zones
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Why new BLM?

Challenges
= RF cavities emit y-rays — a problem to ionization chambers used as BLMs

= |n high intense but low energy regions of accelerator charged particles and y’s do not
even exit the accelerator vessel
= At some cases, continuous monitoring of small losses is needed
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Why new BLM?

Challenges
= RF cavities emit y-rays — a problem to ionization chambers used as BLMs

= |n high intense but low energy regions of accelerator charged particles and y’s do not
even exit the accelerator vessel

= At some cases, continuous monitoring of small losses is needed

Proposal:
Neutron BLM (nBLM), Micromegas (MMs) equipped with combination of
appropriate neutron convertors and moderators
Fast neutron high efficiency, low for thermal, blind for Y's and X-rays

Two objectives: Signature of beam loss:
fast neutrons

Requirements
v Blind to gammas and X-rays from cavity emissions
v Blind to thermal or slow neutrons: loss their emission location
v Sensitive enough to monitor small losses
v Sensitive and fast enough to react on “catastrophic event”
v Appropriate for high rates, radiation hardness
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Micromegas in a nutshell

MicroMesh Gaseous Structures (Micromegas) as a kind of MPGD
» Two-region gaseous detector separated by a Micromesh
» Micromesh suspended over an anode plane by insulator pillars.

Incident
particle

Drift field
Typical 10°-10° V/cm

I.’.‘ﬁ =

Micromesh

g e

Gap: 30-100 pum '

Amplification field
Typical 10°-10° \fem

Amplification
gap

v Simple and robust, used since long time in
NnTOF, COMPASS or CAST

v High gains (10°-10%)

v Granularity, homogeneity, large areas,
curved

v High fluxes greater than 108 c/cm?/s

v Spatial resolution <11 um

v Time resolution <50 picoseconds (see talk by
T. Papaevangelou)

v Resistive bulk technologies, reduce spark
effects - reduce dead time -» BLM
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Neutron detection with Micromegas

Neutron detection — neutron-to-charge converter

Solid converter: thin layers deposited on the drift or mesh electrode
(*°B, *°B,C, °Li, °LiF, U, actinides...)
v Sample availability & handling
v Efficiency estimation
x Limitation on sample thickness from fragment range
- limited efficiency
x Not easy to record all fragments

Vo Drift
b Drift region -
Vi ks Mesh 0.5 mm’| -
M - . . 0.1mm?! -
Multiplication region =
Vi T < . Anode

Signal collected
on microstrips
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nBLM module

Sensitivity to fast neutron fluxes ~ few n-cm2:st

nBLM
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#3
Double Micromegas (zoom)

— This geometry was simulated using

s Cadmium (1 mm)

w Aluminum foil (50 wm)
== &| micromesh

w— 8,0 (2 um)

[ |He,or N, gas

Proposed geometry
« Cadmium layer

—> to absorb the incident thermal neutrons

—> to thermalize the incident fast-neutrons
 B4C layer

— Increase neutron detection efficiency(~1um)
 Double Micromegas: back to back
~5mm drift -» optimize for dynamic range
« Gas: He2 (or N2, Ne...) + quencher: CO2,
methane, ...

—He is better for photon discrimination
- Leak-tightness more difficult
« Front-end electronics integrated

* Possibility of segmentation = multi channel
output
v Higher rate

and codes to check the compliance with the

requirements, on-going optimization of structure/dimensions and materials. (Georgios Tsiledakis, Laura Segui)
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Proof of concept: nBLM

studies with MC simulations

Response to neutrons
Neutrons between 0.1 eV — 100 MeV
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Initial energy [MeV]

* Optimize geometry for dynamic range

» Efficiency of few %

Time [us]

* Time response
e 10% <10 pus
* 95% after 150us
* Depends on energy
* May not be fast enough
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Proof of concept: nBLM studies with MC simulations

1
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Adding a faster module

Detection of recoll protons produced by neutrons in polypropylene
High flux high energy n's, from the front

» Polypropylene: (n,p) reaction, ~2mm
— quiet insensitive to thermal n's
e Thin Al (50 nm) coating on polypropylene
— to polarize the MMs, insure high transparency to recoll
protons.
« Gas same as slow detector
— Drift: 0.5 — 8 mm (under optimization
2 mm poly- * One single side MMs

propylene

50 mm gas

50 nm Al
H <1 mm Al

1es

» First design for prototypes
by D. Desforges
» As flexible as possible to test
» different options experimentally

ene
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Adding a faster module: MonteCarlo results

Efficiency (10 keV energy cut)
e = 3.5% for 10 MeV
e = 0.35% for 1 MeV
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Time response to neutrons Very good photon/neutron discrimination
0.1 < Eneutron (MeV) < 100 With an energy cut >20 keV
— detector blind to gammas
Response to thermal neutrons (0.025 eV)
1 keV minimum E deposit: € = 0.13 %
10 keV energy cut e = 8.0010°%
20 keV energy cut £ <2.0010°%
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Conclusions & Outlook

» Micromegas is a high performing MPGD, suitable for neutron measurements

= Mature technology
= Radiation hardness, aging properties
= Very good gain, energy & time resolution, granularity...

= Simplicity / low cost

» Micromegas can be coupled with appropriate neutron converters to detect high
energy n's with adjustable sensitivity

» The operation parameters can be adjusted to:
= |ncrease neutron to gamma discrimination
= Coop with very high or low particle fluxes
= Extend the energy dynamic range

» In-kind contract with ESS to deliver 42 nBLM modules in 2.5 years
> Design of detectors + FEE + BEE in collaboration with ESS

> Design and MC simulations on-going
> Test it at different facilities along next year

» A similar system is under discussion with SARAF or the CERN Linac
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Experimental first results

Experimental data using a MMs with one B,C plate, top of a polyethilene box

Data taken with a 2°2Cf neutron source
Good agreement between data and Fluka simulation
Measured overall efficiency: 4.3 - 5%

neutron source data
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NBLM project for ESS

CEA/Saclay in-kind contract with ESS

Expected time for optimization, design, construction,
characterization, installation & commissioning of 42 modules: 2.5 year

2 Dec. 2016 first design of the prototype
2 On going design and simulations to optimize:
Drift, polyethylene thickness, convertor, ...
2 June 2017: 1st prototype
2> June 2017 - April 2018
Test the detector at:
 LICORNE (fast neutrons)
 COCASE (high activity %°Co irradiator)
 ORPHEE (high thermal neutron flux / aging)
« SEDI laboratory (long term stability)

Final prototype design
2> System delivered to ESS Dec. 2018

2> ESS hand over: begin of 2019

une 2017
PDR2
1% prototype

Dec.2016
1st design

ESS
operation
20

delivered

Final design




Micromegas with resistive strips

Electrode de dérive
|5 mm Protection against sparks
Micro-grille and/ar

P TR TR R R W g tem e spread of the charge

128 um Film résistif (kapton) E 8
ou pate M. Dixit et al., NIM A518 (2004), 721
(1k-500MQ/[)

== |solant (prepreg — 75 um) Anodes

Different technologies of resistive films developed @ CERN (R. de Oliveira)

Characteristics:
> Resistive strips connected | Resistive kapton (2 MQ/0J)

to the ground Resistive paste (250 MQ/ OJ)
» Thin insulating layer

between of the resistiveand
readout strips { Resistive Pads

» AC coupling of signals (a few tens of kQ/CJ)

» Sparks are neutralized
through the resistive strips

to the ground ;_____:

0022222

Elﬂu Thomas. Papaevangelou@cea fr CERN, 24 June 2016

Resistive strips
(400 kQ/ 1)
12




Why new BLM?

Challenges

" RF cavities emit y-rays — may pose a problem to ionization chambers used as BLMs

= |n the case of high intensity but low energy regions of an accelerator charged particles and y’s do
not even exit the accelerator vessel

= At some cases, continuous monitoring of small losses is needed
— Minimize and control any beam losses
= Location of lost is important to define BLM
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* Every 10s there is an energy ( '"*-,_I
RF pulse with no beam |
« RF pulse subtracted BRF only B Loss:only A
« Sensitive to fluctations - M —
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