

2nd ATTRACT TWD Symposium in Detection and Imaging

4-5 November 2016 Strasbourg

Thermal neutron detection with high efficiency and high granularity, using large area Micromegas detectors

T. Papaevangelou, A. Delbart, A. Menelle, G. Tsiledakis

CEA Saclay

Micromegas concept

Two-region gaseous detector separated by a Micromesh:

- Conversion region
 - Primary ionization
 - Charge drift towards A.R.
- Amplification region
 - Charge multiplication
 - Readout layout
 - Strips (1/2 D)
 - Pixels
- → Very strong and uniform electric
- metallic micromesh (typical pitch 50µm)
- sustained by 50-100 µm pillars
- simplicity
- · single stage of amplification
- fast and natural ion collection
- · discharges non destructive

MICROMEsh GAseous Structure Giomataris, Charpak (1996)

Y. Giomataris et al., NIM A 376 (1996) 29

In 1st Micromegas
Fishing line spacers have been used

The Micromegas detector

Micro-mesh (cathode)

The metallic micro-mesh must be 5 to 30 mm thick with needed equivalent wires densities ranging from 500 to 2000 Lines Per Inch (LPI). Stainless steel woven meshes, electroformed Nickel meshes, or chemically etched copper meshes are used.

Printed Circuit Board (anode PCB)

- It can be up to 1- 3 m^2 and down to 100 μ m thin.
- Copper strips or pads can be ≈100 µm to few mm large and insulation between them as low as 50 µm.
- Copper is usually covered by a Ni/Au layer for a total thickness which must be kept as low as possible (down to 5 mm) with a « smooth » surface.

A Φ30 cm 12 layers PCB with 4000 x 4 mm² pads for the MINOS TPC (18000 blind vias)

Drift electrode + neutron converter

For thermal neutrons, it can be a thin aluminum foil or a metallic mesh covered by a 1-2 mm thick layer containing ¹⁰B (such as B_4C) or by a ≈ 100 mm thick ⁶Li layer.

mesh covered by a 2 μm thick B₄C layer (Linköping Univ.)

> For high energy neutrons, a few mm thick polyethylene (CH₂) sheet is used.

Micromegas technologies

to realize the micro-mesh + anode PCB assembly

Bulk-micromegas

Embedding of the mesh between two layers of insulating pillars by use of photolithography technics

Copper segmented **Base Material** anode Lamination of Vacrel Photo-imageable polyamide film Positioning of Mesh Stainless steel woven mesh Encapsulation Selective UV

exposure Border frame Development Spacer

Contact to Mesh

micro-bulk micromegas

Micromegas is built from a double sidded copper clad kapton foil by selective chemical etching of copper (mesh and anode strips) and kapton (insulating pillars).

A 10x10 cm² micro-bulk (NEXT prototype)

Neutron detection with Micromegas

Neutron detection → neutron to charge converter

- Solid converter: thin layers deposited on the drift or mesh electrode (10B, 10B4C, 6Li, 6LiF, U, actinides...)
 - ✓ Sample availability & handling
 - ✓ Efficiency estimation
 - Limitation on sample thickness from fragment range
 ⇒ limited efficiency
 - * Not easy to record all fragments
- Detector gas (³He, BF₃...)
 - ✓ Record all fragments
 - ✓ No energy loss for fragments ⇒ reaction kinematics
 - ✓ No limitation on the size ⇒ high efficiency
 - * Gas availability
 - Handling (highly toxic or radioactive gasses)
- Neutron elastic scattering
 - > gas (H, He)
 - > solid (paraffin etc.)
 - ✓ Availability
 - ✓ High energies
 - **✗** Efficiency estimation & reaction kinematics

Neutron detection with high efficiency (~50%):

- ➢ ³He crisis
- Increased demand for neutron detectors
 - → Science
 - → Homeland security
 - **→**Industry

Micromegas for neutrons

- Micro-Pattern Gaseous Detector (gain, fast timing, high rate, granularity, radiation hardness, simplicity...)
- Low mass budget
- > Transparent to neutrons
- Large area detectors cheap & robust

The multilayer concept

- > A boron layer thicker than 1-2 µm is not efficient due to the absorption of the reaction products
- Maximum efficiency that can be achieved in this case is of the order of 4-5 %
- ✓ One solution: a tower of detector-converter layers
 - → Many detectors
 - → Lots of material
- ✓ Alternative: a tower of converter layers for each detector: ¹⁰B deposited on thin metallic meshes
 - → Less electronics
 - → Less material

Difficulty: drift the produced charges to the detector through the mesh holes (proper configuration of the electric field)

The multilayer concept

- One module can be consisted of a doubleface Micromegas facing 7+7 ¹⁰B layers
- Such a module can be ~1 cm thick!
- Material:
 - ✓ 0.2 0.3 µm PCB
 - √ 6 x 5 µm Ni
 - \checkmark 2 x micromesh
 - \checkmark 2 x 1 mm Aluminum case
- A stuck of such detectors can be used to increase efficiency
- Detector can be tilted by 45° in respect to the neutron direction.

Status:

- Monte-Carlo studies to optimize the electron transmission & sample thickness
- Prototype for performance studies

Simulation of a 7-layer unit

Perpendicular beam on the Al frame with En = 0.025 eV, Eth = 1 keV, $2\mu m B_4 C - 7$ layers, 1E6 primaries

1 unit with 5 $x^{10}B_4C$ layers

Efficiency

The Micromegas prototype

- Bulk Micromegas 5x5 cm²
- \triangleright Ni frames 7x7 cm²
- Ni meshes 10% & 20% transparent
- Voltages applied with the help of kapton+Cu frames
- Ni meshes double coated with 1.5 μm B₄C layers
 - 10% 20% transparent
 - 5, 20, 120 µm thick
 - 50, 100, 500, 1000 LPI (Linköping University)

5-layer prototype performance

Comparison with commercial ³He tube:

Count rate {³He / MM} = 5.5

Assuming ³He eff. ~ 95%

→ MM eff ~ 18%

Satisfactory result

but:

- > Electron transmission too low when mesh thickness >> 5 μm
- \succ Mesh deformed during B₄C deposition if thickness << 20 μ m
- → Difficult to operate with more than 3 layers per unit with large area Ni meshes

A single 2-mesh detector unit $\rightarrow F=7$, 5 $\times B_4C$ layers

Alternative 1: Kapton mesh (GEM-type)

12.5 µm Kapton mesh

- double-side coated with 3-4 µm Cu
- double-side coated with 1 µm Ni
- double-side coated with 1.5 μm B₄C

 ΔV (10-50 V) applied between the two Cu layers \rightarrow electric field strong enough for sufficient electron transmission

- Small voltage for top layer (< 500 V)</p>
- Small amplification possible to compensate electron losses (factor 2-3)
- ✓ Mesh is cheap and robust
- ✓ Big surfaces possible (1×0.5 m²)

Alternative 1: Kapton mesh (GEM-type)

12.5 µm Kapton mesh

- double-side coated with 3-4 µm Cu
- double-side coated with 1 µm Ni
- double-side coated with 1.5 μm B₄C

- Small voltage for top layer (< 500 V)</p>
- > Small amplification possible to compensate electron losses (factor 2-3)
- ✓ Mesh is cheap and robust
- √ Big surfaces possible (1×0.5 m²)

Problem with B4C deposition: thermal expansion.

- ➤ Use pure ¹⁰B
- > Use a transparent mask (micromesh) during deposition of B_4C

GEM-type kapton mesh

Alternative 2: Microbulk stack

- Microbulk is also a Kapton mesh, Cu-coated.
- Boron can be deposited on the Microbulk surface
 - → double efficiency
 - Ni or Au coating needed
 - Same problem from thermal expansion coefficients
- Units can be stacked without limitation, using only 3 voltages (same cathode, mesh, anode voltages)
- ✓ Unit can be very thin (~1 mm)
- ✓ Low material budget
- ✓ Common / independent readout possible

Summary

We are examining possible ways to increase the detection efficiency for thermal neutrons, using solid neutron-to-charge convertors:

- \triangleright A Micromegas equipped with several metallic (Ni) thin meshes coated with B₄C in both sides
 - ✓ Efficiency improvement as expected by the simulations
 - × Small electron transmission for thick (robust) meshes
 - Deformation & fragility for thin meshes. Problem for large surface detectors
- \blacktriangleright A Micromegas equipped with GEM-type meshes coated with B₄C in both sides
 - ✓ Good electron transmission. Amplification during transmission easy
 - ✓ Small voltages
 - ✓ Robustness. Large surface detectors possible with low cost
 - Deposition of B4C on the foil is difficult. Under study
- \triangleright A stack of Microbulks coated with B₄C
 - ✓ Low material, thin detector
 - × Deposition of B4C on the foil is difficult. Under study.

Thank you!

Microbulk Micromegas technology

Micromesh 5μm copper

Kapton 50 µm

Readout pads

Microbulk Technology

By I. Giomataris and R. De Oliveira

Lower capacitance Under development

The pillars are constructed by **chemical processing** of a **kapton foil**, on which the mesh and the readout plane are attached. **Mesh is a mask for the pillars!**

Typical mesh thickness 5 μm, gap 50/25 μm

- ✓ Energy resolution (down to 10% FWHM @ 6 keV)
- ✓ Low intrinsic background & better particle recognition
- ✓ Low mass detector
- √ Very flexible structure
- ✓ Long termstability
- Higher capacity
- Fabrication process complicated
- Fragility / mesh can not be replaced

The "real XY structure"

Bulk Micromegas are too massive to be in a neutron beam in parallel with \times -section measurements

X-Y Microbulks are quite massive compared to the singleanode ones

A permanent profiler (+flux monitor!) would be useful for n_TOF EAR1 & EAR2, NFS, GELINA

RD51 Project, 15kE for CEA, UniZar & Demokritos: "real" X-Y microbulk by mesh segmenting

Motivation:

- ✓ Microbulk production simplification
- ✓ Mass minimization
- ✓ Large surfaces with high radiopurity possible

Ideal for:

- > Low mass neutron beam profilers/detectors
- Large area low background detector

Challenges:

🖊 Irfu

- No common mesh signal to use as event trigger.
 The strips information has to be used for that purpose.
- Special readout electronics should be used for the mesh strips
- Special circuitry for providing the mesh-strips HV should be built.

XY Prototype evolution

First batch:

- Problems during etching due to holes topology.
- Many strips in short circuit.

Second batch

- Etching OK with the new topology
- All detectors working
- × Bad energy resolution due to large gaps (~150 μ m)

Third batch

- Holes Ø 60/50 μm
- Gaps reduced to 35 μm
- Energy resolution OK!

The first detectors produced:

- 58 x 59 strips on a 6 x 6cm² area (1mm thickness)
- Mesh hole:~ 60μm / Pitch: 100 μm.

2nd ATTRACT TWD, Strasbourg, 4-5 Nov. 2016

Micro Pattern Gaseous Detectors (MPGD)

Best technology for gaseous detector readout:

Micro Pattern Gaseous Detectors

- · high granularity
- more robust than wires
- · no ExB effect
- fast signal & high gain
- low ion feedback
- better ageing properties
- · easier to manufacture
- lower cost
- big surfaces

Micromegas

GEMs

Bulk Micromegas technology

Result of a CERN-Saclay collaboration (2004)

Process to encapsulate the mesh on a PCB (mesh = stretched wires)

Motivations for using bulk Micromegas the mesh is held everywhere:

- > the mesh is held everywhere
- robustness (closed to dust)
- > can be segmented
- > repairable
- large area detectors feasible and robust!

I. Giomataris et.al., NIM A560 (2006) 405

Bulk Micromegas technology

Bulk Micromegas: The pillars are attached to a woven mesh and to the readout plane

Typical mesh thickness 30 μm, gap 128 μm

- √ Large area detectors feasible and robust!
- ✓ Curved surfaces
- ✓ Mass production!

Mesh thickness & bigger gap: some disadvantages in special applications:

- * Good but limited energy resolution (~18% @ 6keV)
- Restrictions on materials

Micromegas applications

thomas.papaevangelou@cea.fr