Massimo Mischi

Eindhoven University of Technology

m.mischi@tue.nl

www.bmdresearch.nl

TU/e Ei

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Why contrast?

Why contrast?

[Olszewski et al. Eur Heart J 2007]

Dynamic contrast-enhanced ultrasound

Ultrasound transducer

Pressure waves

Microbubbles

Applications

- Detection of intracardiac shunts
- Intrapulmonary shunt
- Left ventricular opacification/endocardial border definition
- Assessment of myocardial perfusion
- Cancer diagnostics (angiogenesis)
- Atherosclerotic plaque characterization

Mechanical index

- Microbubbles are deformed by higher ultrasound power to point of destruction.
- Mechanical Index (MI) = Acoustic Power [kPa] / $\sqrt{f_0}$ [MHz]. It defines the mechanical interaction US/bubbles
- Low mechanical index (up to 0.3) is typically used for imaging (bubble detection).
- MI > 0.7 is associated with bubble destruction and cavitation fenomena.

- > UCA are microbubbles with a diameter 1-10 μ m
- They are made of an inert gas enclosed in a phospholipidic, albumin, or polymer shell.
- When invested by ultrasound waves they start oscillating and scattering energy with a nonlinear behavior

Electron microscopy 13500×

7

Technische Universiteit **Eindhoven** University of Technology

Name	Manufacturer	Year	Gas	Coating	Approved	Available
Echovist	Bayer Schering Pharma AG	1991	air	galactose	EU, Japan, Canada	
Albunex	Molecular Biosystems	1994	air	human albumin	EU, USA, Canada	
Levovist	Bayer Schering Pharma AG	1996	air	galactose, trace palmitin	$Worldwide^1$	2
Optison	GE Healthcare AS	1997	C_3F_8	human albumin	EU, USA	EU, USA^3
Definity	Lantheus Medical Imaging	2001	C_3F_8	phospholipids	Worldwide ⁴	Worldwide
SonoVue	Bracco SpA	2001	SF_6	phospholipids	Europe, China, S Korea, India, Hong Kong, Singapore	Europe, China, S Korea, India, Hong Kong, Singapore
Imagent	Alliance Pharmaceutical Corp.	2002	C_6F_{14}	phospholipids	USA	
Sonazoid	Amersham Health	2006	C_4F_{10}	phospholipids	Japan	Japan
$BR38^5$	Bracco SpA		C_4F_{10}/N_2	phospholipids		

TABLE I. COMMERCIALLY AVAILABLE ULTRASOUND CONTRAST AGENTS.

 $^1\!\mathrm{Approved}$ in 65 countries, but not in the United States.

 2 Expected to finish in 2010.

³Temporarily unavailable 2006–2010.

⁴Approved in United States, Canada, Mexico, Israel, Europe, India, Australia, Koria, Singapore, UAE, and New Zealand. ⁵In clinical development.

[Faes et al, IEEE TUFFC 2013]

Free-bubble dynamics

Encapsulated-bubble dynamics

Rayleigh Plesset Equation

$$\rho R\ddot{R} + \frac{3}{2}\rho \dot{R}^2 = \left(\frac{2\sigma}{R_0} + P_0 - P_v\right) \left[\left(\frac{R_0}{R}\right)^{3k} - 1\right] - P(t)$$

Modified Rayleigh Plesset Nolting Neppiras Poritsky (RPNNP) Equation

$$\rho R\ddot{R} + \frac{3}{2}\rho \dot{R}^{2} = \left(\frac{2\sigma}{R_{0}} + P_{0} - P_{v}\right) \cdot \left[\left(\frac{R_{0}}{R}\right)^{3k} - 1\right] + 4\frac{\mu_{f}\dot{R}}{R} - P(t)$$
Pressure drop by viscous damping due to fluid viscosity μ_{f}

Model for shell encapsulated bubbles (de Jong, 1991)

$$\rho R\ddot{R} + \frac{3}{2}\rho\dot{R}^{2} = \left(\frac{2\sigma}{R_{0}} + P_{0} - P_{v}\right) \cdot \left[\left(\frac{R_{0}}{R}\right)^{3k} - 1\right] + S_{p}\left(\frac{1}{R} - \frac{1}{R_{0}}\right) - \omega\delta_{t}\rho R\dot{R} - P(t)$$
natural frequency
Shell elasticity parameter (N/m)
Total damping factor = $b/2\pi f_{n}m_{t}$

damping cooff

mass

Damping factor

$$\delta_{\rm t} = \delta_{\rm rad} + \delta_{\rm vis} + \delta_{\rm th} + \delta_{\rm f}$$

$$\begin{array}{ll} \mbox{Re-radiation damping} & \delta_{\rm rad} = \frac{2\pi f_{\rm n}}{c} R_{0}, \\ \mbox{Fluid viscosity damping} & \delta_{\rm vis} = \frac{2\mu_{\rm f}}{\pi f_{\rm n} \rho R_{0}^{2}}, \\ \mbox{Thermal damping} & \delta_{\rm th} = B(f, R_{0}) \frac{f_{\rm n}^{2}}{f^{2}}, \\ \mbox{Shell friction damping} & \delta_{\rm f} = \frac{6\mu_{s}T_{s}}{\pi f_{\rm n} \rho R_{0}^{3}}. \end{array}$$

[T.G. Leighton, *The acoustic bubble*, Oxford University Press, 1995]

Small oscillations for encapsulated bubbles

Natural frequency for free bubbles

$$f_{\rm n} = \frac{1}{2\pi} \sqrt{\frac{s}{m}} = \frac{1}{2\pi\sqrt{\rho}R_0} \sqrt{3k\left(P_0 - P_{\rm v} + \frac{2\sigma}{R_0}\right) - \frac{2\sigma}{B_0} + \frac{2S_{\rm p}}{R_0}} + \frac{2S_{\rm p}}{R_0}$$

Minnaert resonance:

$$f_n = \frac{1}{2\pi R_0} \sqrt{\frac{3\kappa P_0}{\rho}}$$

Backscatter coefficient

The ultrasound backscatter is defined by the *backscatter coefficient* β , which is the *scattering cross-section* (cm²) per unit volume (cm³) and per scattering angle (sr).

The scattering cross-section of a bubble is the ratio between the power scattered in all directions, W (average power over a period T=1/f), and acoustic intensity I_i .

$$\epsilon(t) = \epsilon_0 \cos(2\pi ft) \qquad b_{rad} = 2\pi fm \delta_{rad} = \frac{16\pi^3 \rho R_0^4 f^2}{c}$$

$$W = \frac{1}{T} \int_0^T (F \cdot \dot{\epsilon}(t)) dt = \frac{1}{T} \int_0^T (\dot{\epsilon}(t) \dot{b} \cdot \dot{\epsilon}(t)) dt = \frac{1}{2} 4\pi^2 f^2 \epsilon_0^2 b$$
Force to compensate damping
$$\Sigma(R_0, f) = \frac{W}{I_i} = \frac{\frac{1}{2} 4\pi^2 f^2 \epsilon_0^2 b}{P_i^2 (2Z)^{-1}} = \frac{4\pi R_0^2}{\left[(f_n (R_0)/f)^2 - 1 \right]^2 + \delta_t^2 (R_0, f) \right]}$$
Which is the scattering cross-section if $f > f_0$?

Backscatter coefficient

$$\Sigma_{\rm tot}(f) = \int_{R_{\rm min}}^{R_{\rm max}} n(R) \Sigma(R, f) dR$$

Total scattering cross-section accounts for interaction forces depending on normalized radius distribution n(R).

Backscatter coefficient [cm⁻¹ sr⁻¹]: $\beta(f) = \frac{\rho_n \Sigma_{tot}(f)}{4\pi}$, with ρ_n number of bubbles per unit volume.

Intensity received by the transducer:

sample volume

$$I = \frac{dV}{z^2}\beta(f)I_{\rm i} = \frac{dV}{z^2}\frac{\rho_{\rm n}\Sigma_{\rm tot}(f)}{4\pi}I_{\rm i}$$

distance from the transducer

The average $\beta(f)$ over the spectrum is the Integrated backscatter coefficient (IBI).

Ue Technische Universiteit Eindhoven University of Technology

Thresholding and buckling

The tension as a function of the bubble radius $(R_0=2 \mu m)$ for Marmottant model in elastic regime, buckling, and rupture of the shell.

Notice the compression only behavior...

Attenuation

Extinction cross-section (similar to backscatter but for power loss)

 $a_{\rm e}$ depends on scattering in all directions and damping. A term $a_{\rm d}$ can also be considered to account for chemical decay (dissolution).

e Technische Universiteit Eindhoven University of Technology

Nonlinear behavior

Backscatter spectrum

2nd harmonic imaging

Frinking et al, Ultras Med Biol, 2000:26(6):965-975.

Pulse inversion

Tx: transmitting two pulses p_1 and p_2 , where: $p_2 = -p_1$

Rx: summing the two echoes: $e_{pi} = e_1 + e_2$

Power modulation

Tx: transmitting two pulses p_1 and p_2 , where: $p_2 = \alpha p_1$

Rx: scaling and subtracting the two echoes: $e_{pm} = e_1 - e_2/\alpha$

Contrast-specific imaging

Power modulation

Contrast-specific imaging

Contrast concentration

Power modulation

Data calibration / linearization

Video density:

- Low UCA concentrations: $I \propto C$
- Dynamic-range compression: $Q \propto \log(I)$

$$Q(C) = a_0 \ln(a_1 C + 1) + a_2$$

- Dynamic-range parameter a₀
- I(C) regression-line angle a₁
- Baseline a₂

Data calibration / linearization

If we inject a dose *m* in a compartment of unknown volume *V*,

we can estimate **V** by measuring **C**:
$$V = \frac{m}{C}$$

What are *m* and *C* in contrast-enhanced ultrasound (CEUS)?

- Based on the adopted calibration, *C* is the concentration corresponding to the measured signal (acoustic intensity or gray levels), usually expressed in volume fraction.
- Therefore, *m* is the volume of injected contrast agent.

Mono-compartment model

$$\frac{dC_0(t)}{dt}V = \left(C_i(t) - C_0(t)\right)Q$$

- $C_i(t)$ = input concentration
- $C_{o}(t)$ = output concentration (or concentration in the compartment)
- *V* = volume of the compartment
- Q = flow through the compartment

Mono-compartment model

$$\frac{dC_0(t)}{dt}V = \left(C_i(t) - C_0(t)\right)Q$$

Laplace transform *L*[.]

$$\tau \frac{dC_0(t)}{dt} + C_0(t) = C_i(t) \quad \longleftrightarrow \quad \frac{C_0(s)}{C_i(s)} = \frac{1}{\tau s + 1}$$

with τ = system *time constant* = V/Q

Technische Universiteit Eindhoven University of Technology

Τι

Dilution impulse response of a compartment

- $C_{i}(t)$ = input concentration
- $C_{o}(t)$ = output concentration
- V = volume of the compartment
- Q = flow through the compartment
- τ = system *time constant* = V/Q

convolution Impulse $C_{o}(t) = C_{i}(t) * h(t)$ $C_{o}(s) = C_{i}(s)H(s)$ H(s) = L[h(t)] $h(t) = L^{-1}\left[\frac{1}{\tau s + 1}\right] = \frac{1}{\tau}e^{-\frac{t}{\tau}}$

Mono-compartment step response

Assume for $t \le 0$, $C_0 = 0$, and at time t = 0 the input quantity, C_i , increases instantly by an amount A, i.e.,

Mono-compartment step response

MP indicates the blood flow in the myocardium [flow/unit tissue volume], which is the heart muscle.

The major vessels in the myocardium are the coronary arteries, which draw oxygenated blood from the root of the aorta, and the coronary veins, which carry de-oxygenated blood to the right atrium (RA).

A lack of perfusion is known as ischemia, which leads to reduced wall thickening/motion (ipokinesis) and dyssinchrony of the ventricular contraction.

Destruction (flash) replenishment method

$$C_0(t) = A\left(1 - e^{-\frac{t}{\tau}}\right)$$

Perfusion
$$\propto A/\tau$$

Wei et al, Circulation, 1998.

$$A \propto \frac{V_{v}}{V_{t}} \Longrightarrow \frac{A}{\tau} \propto \frac{V_{v}}{V_{t}} \cdot \frac{1}{\tau} = \frac{V_{v}}{V_{t}} \cdot \frac{Q}{V_{v}} = \frac{Q}{V_{t}}$$

Stress echo is a well known procedure in clinical practice to look at wall motion and MP. The echocardiographic investigation is made at about 85% of maximal PR.

In young patients exercise is the preferred option.

Only when exercise is not possible:

- Injection of vasodilators (more to look at MP, increase PR of ~10%)
 - Adenosine (faster effect)
 - Dipyridamole (slower effect, 10-15 min side effects, but more time for imaging...)
- Injection of dobutamine (more for wall motion)

Indicator dilution curve / time intensity curve

Evolution over time of the contrast concentration after a contrast <u>bolus</u> injection

Heuristic features

Features used for semi-quantitative interpretation of the IDC:

- Peak Intensity (PI)
- Area Under the Curve (AUC)
- Wash-in Time (WIT)
- Wash-in Rate (WIR)

Qualitative cancer diagnostics by CEUS

Qualitative diagnosis of liver lesions by early wash-in (arterial phase) and wash-out (portal phase).

Ue Technische Universiteit Eindhoven University of Technology

Mass conservation

$$\frac{dm}{dt} = \frac{dV}{dt}\frac{dm}{dV} = Q(t)C(t)$$

We are interested in the integral of the mass-conservation equation, i.e., the *Stewart-Hamilton* equation:

$$\int_{0}^{\infty} dm = \int_{0}^{\infty} Q(t)C(t)dt \to m = Q\int_{0}^{\infty} C(t)dt.$$

Therefore, $Q = \frac{m}{\int_{0}^{\infty} C(t)dt}$ with Q = constantm = injected dose

Ue Technische Universiteit Eindhoven University of Technology

Mean transit time (MTT) and volume (V)

 $\mathbf{V} = \mathbf{M}\mathbf{T}\mathbf{T}\cdot\boldsymbol{Q}$

$$V = \frac{m \int_{0}^{\infty} t \cdot C(t) dt}{\left(\int_{0}^{\infty} C(t) dt\right)^{2}}$$

Mean transit time and volume

$$MTT = \frac{\int_{0}^{\infty} t \cdot C(t) dt}{\int_{0}^{\infty} C(t) dt}$$
$$V = MTT \cdot Q$$
$$m\int_{0}^{\infty} t \cdot C(t) dt$$
$$V = \frac{0}{(m-1)^{2}}$$

 $\left(\int_{\Omega}^{\infty} C(t) dt\right)$

Requirements

Linear relationship concentration vs. measured quantity

Fully determined relationship concentration vs. measured quantity

Pulmonary blood volume

[Mischi et al, IEEE TUFFC 2004]

Pulmonary blood volume

Recirculation problem

TU/e Technische Universiteit Eindhoven University of Technology

Poor signal-to-noise ratio

IDC measured from single pixels in the prostate...

Need for model fitting

Ue Technische Universiteit Eindhoven University of Technology

(main) IDC distributed models

Lognormal

$$C(t) = \left(\frac{m}{Q}\right) \frac{1}{\sqrt{2\pi\sigma t}} e^{\frac{-(\ln(t)-\mu)^2}{2\sigma^2}}$$

$$MTT = e^{\mu + \frac{\sigma^2}{2}}$$

[Qian & Bassingthwaighte J Theoretical Biology 2000]

Local Density Random Walk (LDRW)

$$C(t) = \left(\frac{m}{Q}\right) \sqrt{\frac{\lambda}{2\pi\mu t}} e^{\lambda - \frac{\lambda}{2} \left(\frac{t}{\mu} + \frac{\mu}{t}\right)}$$

[Sheppard and Savage *Phys. Rev.* 1951] [Mischi *et al.* ERASIP J Appl Signal Processing 2003] [Kuenen *et al.* IEEE T-MI 2011]

Gamma

shape factor $C(t) = \left(\frac{m}{Q}\right) \frac{\beta^{\alpha}}{\Gamma(\alpha)} t^{\alpha-1} e^{-t\beta} \quad \text{rate factor}$ Gamma operator [Thompson *et al.* Circ Res 1964] [Mischi *et al.* Physiol Meas 2008] $\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx$ $MTT = \mu$

MRT (mean resident time) = $\mu \left(1 + \frac{1}{\lambda}\right)$

$$MTT = \alpha\beta$$

Atherosclerotic plaque

Intravascular echography

Imaging plaque perfusion

Plaque angiogenesis related to plaque instability and reduced by statin therapy [Circulation 2002;105(4):415-418].

Plaques may be considered tumors, and specific drugs (angiogenesis inhibitors) could be carried and locally delivered by targeted microbubbles [Circulation 1999, 99:1726-1732].

Plaque vascularization imaging by CEUS [SB Feinstein, JACC 2006, 48(2):236-43].

Instability and risk assessment?

Courtesy of Prof. S.B. Feinstein

Bubbles for medical treatment

The most destructive shock is due to cavitation Ultrasound in Med. and Biol. 21(1),97-107,1995

Claw jet

Thrombosis

Myocardial Infarction (1,000,000 cases/year in the USA)

A clot, which may consist of a blood coagulation or a plaque fragment, obstructs a coronary artery and interrupts the blood flow to a specific area of the myocardium. The consequence is a myocardial infarction.

Thrombosis

Ischemic stroke (500,000 cases/year in the USA)

A clot, which may consist of a blood coagulation as well as a plaque fragment, interrupts the blood flow to a specific area of the brain, which stops functioning and is damaged due to anoxia.

University of Technology

Thrombolysis

1 - Surgical intervention

- Bypass
- Thrombectomy catheters (angioplasty)

2 - Non-invasive intervention

- Infusion (~ 0.9 mg/kg) of thrombolytic drugs such as t-PA (tissue-plasminogen activators), Urokinase, etc.
- Sonolysis with low frequency (24 kHz 1 MHz) and high intensity (>1W/cm²) ultrasound (high MI).

Open vessel

Bubble thrombolysis

Sonolysis

It is far more efficient when combined with infusion of microbubbles. In this process, sub-micron bubbles are the most effective.

Possible explanations:

- The presence of microbubbles lowers the cavitation threshold shortening the thrombolysis time.

- Increased permeation of thrombolytic agent into clots.

Bubble thrombolysis

Sonolysis

[E.C. Unger, T. Porter W. Culp, et al., Advanced Drug Delivery Reviews, vol. 56, pp. 1291-1314, 2004]

Targeted bubbles for drug delivery

Cavitation also induces a temporary increase of membrane permeability that leads to increased uptake of genes and drugs. Most efficient frequency around 1 MHz.

Microbubbles can therefore be loaded with genes or drugs and destroyed by high power ultrasound bursts for targeted drug release.

[J. Chomas, P. Dayton, D. May, K. Ferrara, Journal of Biomedical Optics, 6(2):141-150, 2001]

Targeted bubbles for drug delivery

- 1. Natural binding of leukocytes to bubble phospholipidic shells (enhanced by shell inclusion of phosphatidylserine) makes bubbles stick to inflamed areas, such as unstable atherosclerotic plaques, which contain macrophages, i.e., foam cells.
- 2. Targeted microbubbles can also be obtained by conjugating specific ligands to the shell. The main applications are:
 - Bubbles targeted to attach to fibrin and integrin for thrombosis detection, adenosine delivery (myocardial reflow), and clot-lysis.
 - Bubbles targeted to α_v -integrins or vascular endothelial growth factor (VEGF) expressed in neo-vessels for early tumor and atherosclerosis detection.

Blood Brain Barrier (BBB) opening for brain medical treatment

The BBB prevents delivery of therapeutic agents to the brain

Probably due to cavitation, microbubbles with high intensity ultrasound open the BBB, as confirmed by histology and Gd MRI studies.

This techniques might allow efficient chemotherapy treatment of brain tumor metastases. Brain neurodegenerative diseases, such as Alzheimer, might be treated too.

K. Hynynen, N. McDonald, N. Vykhodtseva, F.A. Jolesz, Radiology, vol. 220, pp. 640-646, 2001

Thank you!

www.bmdresearch.nl

