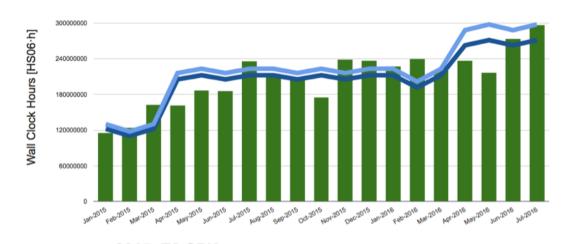
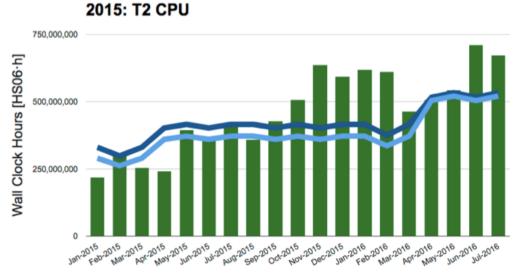


Resource utilisation


Resource utilisation continues to be very high

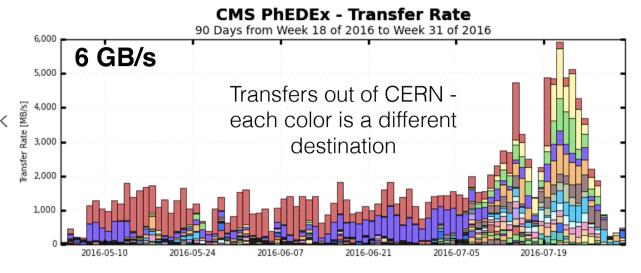
◆ production vs analysis share at 60%-40% over long periods

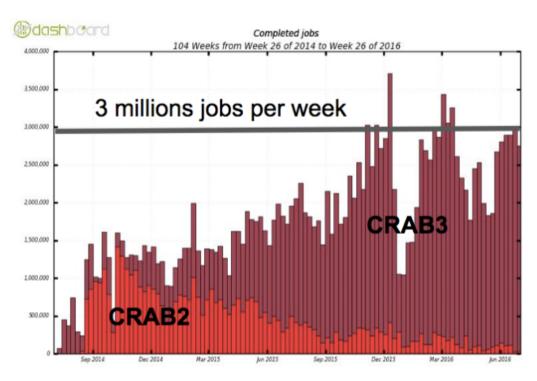


Average CPU usage at T1 level over last year was ~103%

◆ note that T1s are <u>under-pledged</u> in CPU/Disk/Tape, situation to be addressed with the help of the CRSG

Over last year, CMS used ~122% of the pledges at the T2 level





A couple of operations highlights

Unprecedented rates out of CERN

 close debugging of EOS, Network and other middleware components allowed to hugely increase export capabilities from CERN to all Tiers

Consistent load from distributed analysis users

- Successfully completed migration to CRAB3, the latest version of the CMS Grid analysis toolkit
- ◆ Analysis is ramping up again at Run-1 levels

Computing resources in 2017/18

Higher LHC live time and performance pose challenges

- increase of requests with respect to the Spring'16 requests
- resource requests docs submitted to the CRSG under scrutiny

Many actions to mitigate the increase in resource requests have been taken already

- we exploited the flexibility in the CMS Computing Model
 - e.g. very aggressive tape deletion campaigns (with all the associated risks), reduction of AOD replicas on disk to <1, etc
- allowed already to achieve an increase in resource requests of +20% overall instead of +40% (as it would have been by just applying straight new LHC performance projections)

But CMS is short of resources in 2016 already

- data taking in 2016 much better than we could anticipate as from the LHC performance projections, so we are of course short now
- ◆ small contingency from 2015, and no contingency left for 2017
- ◆ NOTE: we are (since at least 3 years) <u>underpledge</u> at T1s
 - REBUS: CPU -6%, Disk -7%, Tape -12%. And actually really installed (end of Jul) a few % less.