

Online Track Reconstruction on GPUs for the Mu3e and LHCb experiments

IEEE Real Time 2018, Williamsburg, VA **Dorothea vom Bruch** For the Mu3e and LHCb Collaborations June 11th, 2018

Why Reconstruct Tracks Online?

Mu3e: $\mu^+ \rightarrow e^+e^-e^+$

LHCb: Specific decays

Continuous muon beam

LHC bunch crossing at 40 MHz

Find specific track patterns

June 11th 2018

Challenges

- No "easy" pattern to be used by hardware triggers
- Reconstruct all tracks at MHz rates
- Reduce data stream:

Challenges

- No "easy" pattern to be used by hardware triggers
- Reconstruct all tracks at MHz rates
- Reduce data stream:

Why Consider GPUs?

- Need many FPs/s at low cost
- Care about high throughput
- Market changing rapidly → be flexible with design choice

 \rightarrow Go massively parallel on GPUs

Mu3e

June 11th 2018

Mu3e Phase I

- Search for charged lepton flavour-violating decay $\mu^+ \rightarrow e^+e^-e^+$ with a sensitivity in branching ratio better than $2\cdot 10^{-15}$
- In Standard Model: suppressed to BR < 10^{-54}
- Any hint of signal \rightarrow new physics
- Located at Paul-Scherrer Institute (PSI), Switzerland

Mu3e Detector, Central Region

10⁸ µ/s stopped on target, in solenoidal magnetic field

June 11th 2018

Mu3e Readout Scheme

June 11th 2018

Mu3e Readout Scheme

June 11th 2018

Mu3e Readout Scheme

June 11th 2018

Data Flow

June 11th 2018

Data Flow

Direct Memory Acces (DMA) to and from one memory buffer in main memory → No extra copy

June 11th 2018

Mu3e: Find 3 Signal Tracks				
FPGA	GPU GPU			
Find combinations of hits in first 3 layers	Fit tracks with fit developed for multiple scattering dominated resolution			
Transfer these + hits in 4 th layer to GPU				
Reduce 3-hit combinations by factor 70				
Currently emulated on GPU				
June 11 th 2018 D. vom Bruch, GP	U Track Reconstruction 14			

Mu3e: Multiple Scattering Fit

- Electrons: 12 53 MeV/c
- Resolution dominated by multiple Coulomb scattering
- Ignore hit uncertainty
- Three consecutive hits: "triplet"
- Assume multiple scattering at middle hit, minimize x²

$$\chi^{2} = \frac{\Phi_{MS}^{2}}{\sigma_{MS,\Phi}^{2}} + \frac{\theta_{MS}^{2}}{\sigma_{MS,\theta}^{2}}$$

N. Berger, A. Kozlinskiy, M. Kiehn, A. Schöning, NIM A, 2017, arXiv: 1606.04990

inlet

MS

June 11th 2018

Mu3e: Find 3 Signal Tracks					
FPGA	e⁺ GPU				
Find combinations of hits in first 3 layers	Fit tracks with fit developed for multiple scattering dominated resolution				
Transfer these + hits in 4 th layer to GPU	Positive tracks Negative tracks Select combinations of 2 positive, 1 negative track from one vertex, based on circle intersections				
Reduce 3-hit combinations by factor 70	Reduce # of time slices by factor 140				
Currently emulated on GPU	 Signal selection efficiency: 98% 				
une 11 th 2018 D. vom Bruch, GP	U Track Reconstruction 16				

GPU Architecture

- Lower frequency, higher cache latency than CPU
- Thousands of threads \rightarrow hide latency
- SIMD: Single Instruction Multiple Data
- Threads in lockstep: Run on one multiprocessor unit in parallel, execute the same instruction
- Thread count per multiprocessor typically multiple of ALU count
- Threads on different cores / multiprocessors: completely independent of each other

GPU

Mu3e Online Selection on GPUs

- Use 24 streams → memory copy & computations concurrently
- Optimize grid: launch 8192 time slices in one grid, with 128 threads / block
- Optimized memory layout, prepare it on FPGA (3-hit pre-selection)
- Use single precision

June 11th 2018

Fime slices / s

Mu3e Online Selection on GPUs

- Use 24 streams → memory copy & computations concurrently
- Optimize grid: launch 8192 time slices in one grid, with 128 threads / block
- Optimized memory layout, prepare it on FPGA (3-hit pre-selection)
- Use single precision

Process 2.10⁶ time slices / s on one GTX1080Ti

 \rightarrow 12 PCs enough, meet requirements :-)

D. vom Bruch, PhD thesis, 2017, Heidelberg University

lime slices / s

June 11th 2018

LHCb

June 11th 2018

LHCb Detector (2021+)

@ LHC, CERN, Switzerland

June 11th 2018

LHCb Software Trigger

June 11th 2018

LHCb Software Trigger

- 27 GB/s beauty hadrons available → secondary vertices alone do not suffice
 - → need further selection
- Computing challenge
- Study different architectures
 - \rightarrow choose the one with best physics performance / \$
- One option: run HLT1 (or parts of it) on GPUs

June 11th 2018

LHCb Track Reconstruction

June 11th 2018

LHCb Track Reconstruction on GPUs

Kalman fit on various architectures

GPUs have shown to be price-performant for track fitting in LHCb

→ motivates us to study the performance of the whole sequence on GPUs

D. Cámpora, O. Awile, https://doi.org/10.1002/cpe.4483, 2018

June 11th 2018

LHCb Velo Tracks on GPUs

A. Badalov, D. Cámpora, N. Neufeld, X. Vilasís-Cardona, JINST, 2016, 10.1088/1748-0221/11/01/P01001

- Tracks in VELO: straight lines
- Implemented on GPU
- Use as input for Velo → UT tracking
- Aim for similar setup as in Mu3e farm: place GPU in filter farm PC, transfer data via CPU
- GPU work: preparation for event building

June 11th 2018

LHCb: GPU Outlook

- Work in progress: VELO \rightarrow UT tracking \rightarrow first momentum estimate
- Later this year: add SciFi tracking and muon stations
 → full track reconstruction
- At the end of the year: Is the GPU solution realistic?

June 11th 2018

Conclusions

Mu3e

- Can reduce data rate by factor 140
- Keep 98 % of signal decays
- Process 2.10⁶ time slices / s on one GTX1080Ti
- → Can run on the planned 12 DAQ PCs

LHCb THCp

LHCb

- Promising first results
- Velo tracking implemented on GPU
- Velo → UT tracking work in progress
- Plan: Implement full reconstruction chain

Backup

June 11th 2018

LHCb: Per Event Yields

For generator-level Monte-Carlo

 ϵ (VELO): efficiency for candidates having at least two tracks traversing at least three modules in the VELO ϵ (LHCb): efficiency for candidates having all child tracks contained in the LHCb acceptance

Category	Yield in 4π	ϵ (VELO)	ϵ (VELO) × ϵ (LHCb)		
<i>b</i> -hadrons <i>c</i> -hadrons light, long-lived hadrons	$\begin{array}{c} 0.0258 \pm 0.0004 \\ 0.297 \pm 0.001 \\ 8.04 \pm 0.01 \end{array}$	$\begin{array}{c} 30.5\pm 0.6\%\\ 21.9\pm 0.2\%\\ 6.67\pm 0.02\%\end{array}$	$\begin{array}{c} 11.1\pm0.4\%\\ 14.2\pm0.1\%\\ 6.35\pm0.02\%\end{array}$		
Upgrade, nominal luminosity, VELO pixel geometry					
Category	Yield in 4π	ϵ (VELO)	ϵ (VELO) $\times \epsilon$ (LHCb)		

Source: LHCb Upgrade TDR, Trigger and Online, CERN/LHCC 2014-016

June 11th 2018

LHCb Upgrade Readout Scheme

LHCb Upgrade TDR, Trigger and Online, CERN/LHCC 2014-016

June 11th 2018

LHCb: Secondary Vertices

rate (MHz) LHCb Simulation .2 beauty hadron candidates charm hadron candidates light, long-lived candidates 0.8 0.6 0.4 0.2 0^L 0.2 0.8 0 0.4 0.6 decay time cut (ps)

Rates as a function of decay time cut for part. reco. candidates

Rates as a function of pT cut for part. reco. candidates

June 11th 2018

Track reconstruction for the upgrade

Partial reconstruction sequence : Velo tracking and PV finding

Velo Pix

- Provide the sensor @-20°C: direct x-y-z measurement.
- 🖙 Tracking on raw data.

June 11th 2018

S.I mm distance from interaction point (8.2 mm current VELO)

Velo tracking and PV reconstruction

PV position used to identify displaced tracks in the event.

Track reconstruction for the upgrade

Partial reconstruction sequence : Velo-UT tracking

Upstream tracker (UT)

Carger acceptance in central region

Reduced thickness

June 11th 2018

- $rac{1}{2}$ Improved $\sigma_{x-z} \sim 50 \ \mu m$
- $rac{}{\sim}$ Achievable $\Delta p/p \sim 15-30\%$

Track reconstruction for the upgrade

Partial reconstruction sequence : Forward tracking

Scintillating Fibre Tracker (Sci-Fi)

 \mathbb{R}^3 stations x 4 planes (x/u/v/x) of 6 stacked 2.4 m long scintillating fibres (ϕ =250 µm) Read-out by Silicon-Photon multipliers (250 μ m channel pitch)

х

Find matching segments in SciFi according to transverse momentum tolerances

	R. Quagliani	20 th March 2018	13
lune 11 th 2018		D. vom Bruch, GPU Track Reconstruction	

June 11th 2018

Mu3e: Geometrical selection cuts

June 11th 2018

Mu3e: Vertex Estimate

- Study each combination of two e⁺, one e⁻
- In xy-plane: find intersections of track circles
- Calculate weights of intersections based on uncertainties due to
 - multiple scattering
 - pixel size

Mu3e: Vertex Estimate

- Calculate weighted mean of intersections from three different tracks
- Find point of closest approach (PCA_{xy}) to weighted mean in xy-plane on each track
 Calculate z-position PCA_z and weight at

PCA_x

- Find weighted mean in z-coordinate
- . Achieve vertex resolution of ${\sim}400~\mu m$ sigma

Mu3e: Signal Selection

June 11th 2018

Mu3e: GPU Generations

June 11th 2018

Clock speed no longer increasing

- 2004: clock speed stopped increasing due to heat limit
 - → Multiple core processors
 (Intel i7: 4 cores)
- Next: quantum mechanics limit: O(10 nm)

https://hackadaycom.files.wordpress.com/2015/09/numtransistors.png