
538

1

Abstract—The CODA data acquisition software at Jefferson Lab

uses Java extensively. In particular, we use Java to code the

distributed Event Builder and Event Recorder. Although Java is

not generally regarded as real-time software, we have taken

advantage of several techniques that allow the Event Builder to

handle the data rates being produced by the front end- up to

2GB/s. In this paper, we describe these techniques and discuss

the relative merits of using the Java language in this context.

Index Terms—Java, event building, event recording, data

acquisition, software.

I. WHY JAVA?

VER a decade ago we began the design and development

of a new CODA version for use with the upgraded

detectors of the 12 GeV accelerator at the Thomas Jefferson

National Accelerator Facility (JLab). One goal was to develop

a highly portable data acquisition (DAQ) suite that would be

supported over a wide range of platforms. By far, the most

successful language that has good portability is Java, which was

deliberately designed for that purpose. It has achieved this by

standardizing not only the language, but also the platform

environment through its use of the Java Virtual Machine

(JVM).

An advantage of Java over its alternative, C++, is the shorter

development time due to its memory management, simplicity,

and extensive libraries. Looking at the speed of development as

a whole, one must consider not only how long it takes to write

code, but also how long it takes to find a solution to the problem

at hand - usually finding a bug or adding a feature. Java’s

comprehensibility and maintainability again come out ahead.

Part of the short development time scale is due to the

availability of excellent, no-cost tools such as the IntelliJ and

Eclipse IDEs. These have debugging built in and they partner

well with Oracle’s latest profiling tool, Java Mission Control or

jmc. Jmc does an excellent job while having minimal effect on

a running program.

With this in mind, we chose Java as the primary language for

experiment control, inter-process communication, and user

interfaces. Initial experience with Java convinced us that the

1 This work was supported by the U.S. Department of Energy under Contract

No. DE-AC05-06OR23177.
C. Timmer, D. Abbott, W. Gu, V. Gyurjyan, G. Heyes, E. Jastrzembski, and

B. Moffit are with the Thomas Jefferson National Accelerator Facility

performance was also acceptable as the primary language for

major system components such as the Event Builder (EB) and

Event Recorder (ER) that involve moving bulk data but very

little compute intensive code. The data acquisition group at

JLab is small but the use of Java allowed rapid coding progress.

II. CONTEXT

Of the four experimental halls at Jefferson Lab, Hall D

running the Gluex experiment has the most demanding online

DAQ requirements. At peak rate, 1.5 GB/s must be taken from

the front end Readout Controllers (ROCs) and eventually

stored on disk. The Fig. 1shows the data flow.

Fig. 1. Online data flow for Hall D. A typical configuration will have over 60

ROCs, 5 Data Concentrators (DC or first level EB), 1 SEB (secondary EB),
and one ER.

The data-producing ROCs are running on VME single board

computers with a Linux operating system and are programmed

in C. The EBs and ER are Java programs running on Linux.

We have taken a divide-and-conquer approach by having two-

tiered event building. The first level EB is a Data Concentrator

(DC) each of which builds events obtained directly from a

subset of ROCs. The output of all DCs go into a Secondary

Event Builder (SEB). The resulting events are sent to the ER

for storage in a file. The network is 40 Gb infiniband.

Using round numbers, with 60 ROCs, each producing

25MB/s of data, the rate into each of 5 DCs will be 300 MB/s.

The input into the SEB will be 5 streams of 300MB/s each or

1.5GB/s.

(Jefferson Lab), MS-10, 12000 Jefferson Ave., Newport News, VA 23606 USA

(emails: timmer@jlab.org, abbottd@jlab.org, jgu@jlab.org,
gurjyan@jlab.org, heyes@jlab.org, jastrzem@jlab, moffit@jlab.org).

The Use of Java in Online Event Building and

Recording at Jefferson Lab

Carl Timmer, David Abbott, William Gu, Vardan Gyurjyan, Graham Heyes, Edward Jastrzembski,

and Bryan Moffit1

O

538

2

III. EB & ER DESIGN

The EB and ER are part of a more general framework, the

Event Management Unit (EMU) within which all components

handling the data are created and with the ability to

communicate with run control built in. It is simple with three

basic components in each EMU. There are input channels that

read incoming data, parse it into individual events, and place

these events on a queue. A module reads the data from the

input queues, processes it, and then writes it to output queues.

Finally, output channels take the processed data from the

output queues and send it to the next EMU. See Fig. 2 below.

Fig. 2. The Event Management Unit’s basic structure.

In CODA, there are different channel types that

communicate using different protocols. Most communicate

over the network in some fashion while one type in particular

writes to files. With communication separated from the event

handling logic, the modules become simpler to program.

There are two types of modules, one being the EB and the

other the ER. The ER module is quite simple since most of the

work is done in the communication channels. It is the EB that

is the main challenge to program.

IV. JAVA PERFORMANCE FACTORS

Most readers will be familiar with the saying that, “the devil

is in the details”, and so it was with our Event Builder. One

member of our group said that, “The EB is like the bagpipes -

easy to build but the devil to tune.” After initially writing the

EB, its speed was disappointingly slow. This lead to an

investigation into finding ways to improve both the

performance of specific classes as well as the programming in

general.

Profiling tests revealed that the code was spending over

40% of its time putting items on and removing items from the

internal queues. We were initially using Java’s (highest

performing) ArrayBlockingQueue class to store events. These

were replaced with ring buffers from a software package

called the “Disruptor” programmed by Martin Thompson et al.

[1] originally for use in high performance financial exchange.

The authors of the Disruptor state that its ring buffer’s mean

latency in a three-stage pipeline is 1000 times lower than an

equivalent queue-based approach. It has less write contention,

lower concurrency overhead and is more cache friendly. They

made measurements comparing the ArrayBlockingQueue with

their ring buffer seen in Table I below.

TABLE I

LATENCY COMPARISON BETWEEN QUEUE AND RING BUFFER

 Array Blocking

Queue (ns)

Disruptor (ns)

Min Latency 145 29

Mean Latency 33,000 52

99% less than 2,100,000 128

99.99% less than 4,200,000 8,200

Max Latency 5,100,000 176,000

As the reader can see, the Disruptor’s performance is orders

of magnitude better than available with Java’s built in queues.

These performance benefits were achieved through a number

of means. Examining these is not only instructive but also acts

as a guide in how to efficiently program Java in general.

A. Locks

Locks are critical for providing mutual exclusion and

ensuring visibility of change in an orderly way. The problem

is that locks, when contended, require a context switch to the

kernel which suspends the threads we want operating at peak

speed. During this time the kernel may choose to run other

tasks which, in turn, may result in loss of cached data and

instructions.

A more efficient alternative to using locks is a Compare

And Swap (CAS) operation which can be performed on a

single word using a single instruction on today’s processors. It

does not context switch to the kernel but still must use a

memory barrier to make changes visible to other threads.

In Table II below from [1], a function which increments a

64-bit counter in a loop 500M times is executed in different

conditions that illustrate the effect of locks and CAS

operations. The reader can quickly see that locks are best

avoided if at all possible even if uncontested.

TABLE II

TIME TO EXECUTE FUNCTION

Method Time (ms)

Single thread 300

Single thread with volatile write 4,700

Single thread with CAS 5,700

Two threads with CAS 30,000

Single thread with lock 10,000

Two threads with lock 224,000

B. Cache Lines and Memory Access

In modern processors, caches are written to in cache-lines

(64 bytes in Linux) for efficiency. If two variables are in the

same cache-line and are written to by different threads, we

face the identical problem as when writing to the same

variable. This is known as “false sharing”. Thus, for best

performance, independent but concurrently written variables

must not be stored in the same cache-line. It is possible to do

this in Java with proper technique.

538

3

If processors can find a pattern of memory access with a

fixed and therefore predictable stride, they will efficiently pre-

fetch memory that will soon be used. This works well with

arrays, but not generally with structures like linked lists or

trees in which nodes are too far and irregularly apart in

memory to be pre-fetched. When possible, use arrays.

C. Queues in a Quandary

A queue, though convenient to use, is not ideal for speed.

In normal operation a queue provides buffering between a

producer and consumers (ignoring multiple producers). If the

consumers are faster, the head and tail will be the same

leading to contention between the producer and all consumers.

If the producer is faster, there will still be contention among

the multiple consumers. Since we are using a bounded queue,

its size will be updated with each operation, also leading to

more contention.

Other inefficiencies include that head, tail, and size often

occupy the same cache-line. If a queue is backed by a linked

list, it takes locking (and time) for each entry to be inserted

into or removed from that list. In addition to each entry having

to be allocated, it must have an associated object representing

that node created, resulting in a significant load on the garbage

collector.

D. Garbage Collection

The single feature that makes Java so easy to use, automatic

memory management, is also one that can cause troublesome

performance issues. When objects no longer have a reference,

the garbage collector reclaims their memory. The larger the

number of objects produced, the longer the garbage collector

needs to stop the program to perform its duties. Programmers

can address this by minimizing the number of objects created

or by reusing them.

Since Java works best with either very short-lived or very

long-lived objects, code accordingly. In a single, young

generation memory block, objects living beyond a short time

are copied and moved out of it to an older generation space

while those that do not are left as is. Since the objects that are

left have no reference, the whole block is reclaimed without

having to handle objects individually.

Here, queues have another disadvantage. Under heavy load,

they can fill up leading to a reduced rate of consumption. This

can result in objects living longer than necessary causing them

to be copied to an older generation space. Being collected

from that old generation space is an expensive operation and

increases the chance of having a “stop-the-world” pause

resulting from the need to compact its fragmented memory.

V. DISRUPTOR

As we stated earlier, our solution was to use the Disruptor’s

ring buffers that use a very clever design to sidestep all the

difficulties queues run into. Each ring is essentially an array

of objects each of which is a container for the data of interest.

These objects are never added to or removed from the ring.

All the memory for a ring is allocated upon creation, making it

likely to be laid out contiguously in memory and therefore

friendly toward caching strategies and making garbage

collection unnecessary.

Access to and bookkeeping of the ring itself is controlled

through objects called a SequenceBarrier (see Fig. 3). In the

case of one producer per ring (which is what we limited

ourselves to), making this separation allows the ring to be

accessed free of contention with no locks or CAS operations.

Critical parts of the code are written in a manner that

eliminates false sharing.

Fig. 3. The Disruptor’s ring buffer and users.

Each producer or consumer tracks its own current position

on the ring or “sequence” as it proceeds from one entry to the

next. This can be seen by the numbers in brackets in Fig.3.

When finished with an entry, the producer makes it available

by setting its own sequence using a memory barrier and

notifying all consumers. Similarly, it avoids wrapping the ring

by monitoring the sequences of consumers. The consumers, on

the other hand, ask their SequenceBarrier which sequences are

available for consumption. When finished processing an

available entry, they set their own sequence with the memory

barrier ensuring all changes are visible to the producer.

In Fig. 3 you can see that the producer is currently finished

producing entry (sequence =) 20, has claimed the next free

entry (5) and when finished, it will update its sequence to 21-

making it available to all consumers. The producer’s barrier

tracks the sequences of both consumers, allowing the producer

to claim up to sequence 12 – the sequence of the slowest

consumer. Meanwhile, consumer 2, the fastest, has consumed

everything and is waiting for the producer. Consumer 1,

however, is slower and is finished with 12, is working on 13

and has up to 20 available. Although not pictured here, the

user can create multiple consumer sequence barriers. This

allows one to distinguish between different groups of

consumers and have them ordered with respect to each other.

An additional benefit of Disruptor design, not available in

queues, is that while consumers are waiting for access to a

specific sequence, they can be notified of all the sequences

available. Access to each of these sequences requires no

further involvement of concurrency mechanisms. For

example, while consumer 2 is waiting to get the next entry

(21), the producer may quickly produce up to entry 28. The

consumer barrier returns from the “get” function call with

sequence 28 meaning all entries up to and including 28 can be

accessed from the ring directly without any bookkeeping. This

batching increases throughput while simultaneously reducing

latency.

538

4

VI. WAIT STRATEGIES

As is often the case, consumers may be faster than the

producer. In such circumstances, they must wait for the next

available entry. In the Disruptor, each ring is created with one

of several possible waiting strategies. The software allows for

choosing between: 1) spinning, 2) spinning then yielding, 3)

cyclically spinning, yielding, then sleeping, 4) blocking then

spinning upon waking up, 5) timing out, and 6) spinning for

given time, yielding for a given time, then switching to

different strategy (phased backoff). It is also a very simple

matter to create another strategy since all source code is

available. We created one that first spins for a given number

of iterations, then blocks, then spins upon waking up (spin-

block). After extensive testing, our spin-block strategy

performed the best in our system.

The performance of our system had a huge dependency on

which strategy we chose. The strategies that spin or spin-yield,

though fast, consumed a tremendous amount of cpu time. In

one simulation of 11 ROCs, each sending at 32 MB/s to one

DC, spin-yield waiting resulted in the DC using 15.8 cores –

most of the cores of an 8-core hyper-threaded machine.

Switching to spin-block waiting reduced that to 2.7 cores and

it had better performance!

VII. PERFORMANCE

We took a number of steps to improve the performance of

the EB. All queues were replaced with ring buffers having a

single producer. A good ring buffer wait strategy was selected.

Unnecessary use of objects was eliminated. Sections of code

needed a continuous supply of ByteBuffers in which to place

incoming data over an input channel or to place built events.

In light of that, we created a fast object pool of reusable

ByteBuffer objects with one-time allocation based on the

Disruptor. Locks were removed whenever possible.

Fig. 4. The Event Builder’s basic structure. Circular objects are the ring

buffers.

The final configuration of the EB looks like Fig. 4. Each

input channel has one ring buffer. Multiple build threads can

simultaneously build events, which we found necessary to

keep the throughput up at high input rates We also found that

one lock was necessary with multiple build threads in order to

preserve output event order. Notice that each output channel

has one ring per event building thread. This was necessary to

ensure only one producer per ring and so to remove

contention.

Originally, each input channel ring had 3 consumer barriers.

The first was used by an event pre-processing thread, the

second by the building thread, and the third by a resource

releasing thread designed to keep output events in order. We

found that the spin-block waiting strategy worked poorly with

more than one barrier, leading to excessive spinning and

doubling the cpu usage. Consolidating the pre-processing and

build threads and using a lock instead of the last thread, we

were able to get better performance while simultaneously

reducing cpu usage by over a factor of 2.

Once we made these improvements, we once again profiled

the EB. With a configuration of 5 inputs at 300MB/s each, we

now spend no measureable time in ring buffer internals and

0.13% of the time in waiting for an empty entry from the input

channel ring so it can be filled with parsed events from

incoming data. The biggest toll is the 0.47% of the time in the

EB’s event building method waiting for entries to be read

from input channel rings. By any standard, this is a vast

improvement over the previous 40%.

In order to assure ourselves that we will be able to handle

the data rates of the Gluex experiment, we did two simulations

of the experimental conditions. In the first, we approximated

the DC with 12 ROC inputs, each producing data at 25 MB/s.

It not only handled this, but we were able to push each input

up to 100 MB/s with no problems while using 4 cores.

For the second simulation, we had 5 inputs producing at

300 MB/s for a total rate into an SEB of 1.5GB/s. It not only

handled this, but we were able to successfully push each input

up to 350 MB/s for a total rate of 1.75 GB/s while using less

than 6 cores.

At this point, with all the afore mentioned changes made

and many bottlenecks removed, the largest consumer of cpu

time (40%) is, as it should be, the method used to take raw

data from several ROCs and build them into a single event.

Our next step is to make this as efficient as possible.

VIII. CONCLUSION

While certainly a challenge, it is possible to program Java

applications to handle multiple input streams of data for an

aggregate rate approaching 2GB/s.

REFERENCES

[1] M. Thompson, D. Farley, M. Barker, P. Gee, and A. Stewart,
“Disruptor: High performance alternative to bounded queues

for exchanging data between concurrent threads” May, 2012.

[Online]. Available: http://lmax-
exchange.github.io/disruptor/files/Disruptor-1.0.pdf

