
C. Gonzalez1, A. Carpeño1, M. Ruiz1, J. Vega2, S. Dormido-Canto3, E. Bernal1, J. Lee1, and JET Contributors*

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK
1Instrumentation and Applied Acoustic Research Group. Technical University of Madrid, Madrid, Spain. Email: antonio.cruiz@upm.es
2Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain 3Dpto. Informática y Automática - UNED, Madrid, Spain
* See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia

OpenCL implementation of an adaptive
disruption predictor based on a probabilistic Venn classifier

21st IEEE Real Time Conference -15 June 2018 
Colonial Williamsburg, U.S.A

ABSTRACT
The ability and flexibility of the Open Computing Language (OpenCL) for task
parallelization in heterogeneous computing platforms (FPGA, CPU, GPU) represent a
remarkable advantage when designing advanced data acquisition and processing
systems. This work shows a specific implementation of an adaptive probabilistic
disruption predictor for a fusion device, tested with signals obtained from JET database.
This implementation uses OpenCL as base technology for the design cycle. The system
was realized using an FPGA-based architecture that comprises a Cyclone V and a GPU-
based architecture that contains an AMDFireProW4300 inserted into a computer running
Scientific Linux as Operating System. This contribution presents the methodology, the
hardware/software system architecture, and the implementation results in both hardware
platforms. The work is focused on the critical aspects involved in the design of these
intelligent data acquisition and processing systems with OpenCL. When dealing with this
technology, it is essential to be aware of aspects such as the significant differences in the
design flow concept between FPGA and GPU implementations, or how to select the part
of the algorithm that is better to be executed in each platform, which is not an easy task.
The test results show that it is possible to achieve prediction times shorter than 500 us.

(1) ADC CONTROLLER DESIGN 
Design of the hardware for controlling the DAQ device, responsible for sending the 
signals samples to the FPGA-based  processing hardware.

[VHDL/Verilog, Quartus II design cycle]

(2) OPENCL BOARD SUPPORT 
PACKAGE GENERATION 
Porting your specific FPGA choice 
reference design of an OpenCL 
compliant BSP to include your new 
acquisition hardware 
a) Modify the reference design that 

includes OpenCL-specific 
components, host-to-FPGA 
communication IP and Memory IP, 
to incorporate the Streaming 
Channels to your specific hardware 
and the new acquisition hardware.

b) Perform the timing closure and 
location of the LogicLock region of 
the design partition for the non-
kernel logic.

c) Create the XML files that informs 
the OpenCL compiler about your 
custom hardware 

[Quartus II and Platform Designer 
design cycle]

(3) OpenCL APPLICATION DEVELOPMENT 
Development of the OpenCL kernels code and the C++ 
host code.

a) Analysis of the processing algorithm and the 
strategy for the optimal tasks parallelization.

b) Development of Kernels code in OpenCL  
Language. Compilation is a slow process and it is 
worth to debug in emulator before generating the 
final bitstream for the FPGA

c) Development of the Host application code in c++
language.

[OpenCL and C++ design cycle, Intel OpenCL offline 
compiler and gcc compiler]

ADAPTIVE DISRUPTION PREDICTOR
OBJECTIVES

• Implementation of an adaptive probabilistic predictor from scratch based on Venn prediction using an
OpenCL-design-based advance data acquisition system

• Performance evaluation of the implementation in a OpenCL FPGA/GPU-based data acquisition system

SIGNALS (JET)
Three Signals sampled at 1KS/s:

 Plasma current (Ip)
 Locked mode (LM)
 Plasma internal inductance (LI)

FEATURE VECTORS
Four Feature vectors for the Venn Predictor, 
using a 32 samples window:

 Standard Deviation of the FFT frequency 
Components for Ip and LM signals

 Mean value for LM and LI signals

MACHINE LEARNING ALGORITHM
1. Operation start
2. Signal data acquisition and storage
3. Wait for first occurrence of a disruptive and  non-

disruptive discharges.
4. First model generation

i. Signals Parameterizing 
ii. Signal normalization
iii. Feature vector calculation(disruptive and non 

disruptive)
5. Wait for a new discharge
6. Real-Time prediction with last calculated model in 

less than 1ms.
7. Signal data acquisition and storage
8. If missed alarm new model generation

i. New signals parameterizing
ii. Signal normalization
iii. Recalculate FV of the current model
iv. Add disruptive FV to a new model
v. Add non-disruptive FV to a new model

9. Repeat steps 5  to 8 until the end of the experiment

CONCLUSIONS
 Prediction time below 500us in a Cyclone V FPGA, with a highly deterministic behavior (15us) and almost 

independent of the model complexity (1us per additional disruptive or non-disruptive vector) 
 Floating-Point (GPU,CPU) and Fixed-Point (Cyclone V FPGA) implementations
 Full design cycle deployment, custom hardware, and OpenCL BSP generation included
 Fully heterogeneous example CPU (C++) and GPU-FPGA (OpenCL)
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MODEL CALCULATION TIME (* Floating Point Implementation)

Implemented on Signals Parameterizing Feature Vectors Calculation

CPU(C++) 0.470 s
(per discharge)

1.702 s
(per discharge)

GPU* 0.362 s
(per discharge)

0.270 s
(per discharge)

32 SAMPLES WINDOW PREDICTION TIME
** Fixed Point Implementation

Version max min avg S.D Time increment per 
vector

CPU(C++) 251 µs 149 µs 170 µs 31 µs 30  µs

FPGA** 421 µs 382 µs 403 µs 15 µs 1 µs

FPGA RESOURCES

Logic 81%
(25867 LE)

Mem 21%
(866K Blocks)

DSP 98%
(85 Blocks)
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