21th Real Time Conference

9-15 June 2018 Woodlands Conference Center, US

High Resolution X-ray Imaging Using Monolithic Silicon Pixel sensor

Chenfei Yang^{1,2}, Changqing Feng^{1,2}, Xiangming Sun³, Jun Liu³, Ping Yang³, Shubin Liu^{1,2}, Qi An^{1,2} ¹State Key Laboratory of Particle Detection and Electronics, Hefei, 230026, China ²Department of Modern Physics, University of Science and Technology of China, Hefei, 230026, China ³Pixel Laboratory at CCNU (PLAC), Central China Normal University, Wuhan, 430079, China

> Chenfei Yang SKLPDE/USTC

11 June 2018

- Monolithic Active Pixel Sensor
 - Low material budget
 - High pixel density/ High spatial resolution
 - Low power consumption
 - Less signal/ power cables

Hybrid Pixel Sensor

MAPS

2

- Designed for ALICE ITS upgrade 2019-2020
 - 2012: prototype circuits: Explorer-1, 2
 - 2013: pALPIDEss
 - 2014: pALPIDE-1
 - 2015: pALPIDE-2, 3
 - 2016: ALPIDE

Ref: M. Mager, ALICE Collaboration. ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade[J] C. Yang, Real Time 2018, Williamsburg

ALPIDE

- pixel size: 27 x 29 μm²
- spatial resolution: 5 μm
- max particle rate: 100 MHz/cm²
- fake-hit rate: <10⁻⁹ pixel/event
- power: ~ 40 mW/cm²

25 µm

PWELL

Epitaxial Layer P-

4

Ref: Rinella G A, ALICE Collaboration. The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System[J] C. Yang, Real Time 2018, Williamsburg

- Designed for pALPIDE-3
- Based on a FPC (Flexible Printed Circuit) pALPIDE-3 Carrier from ALICE
- Used a DAQ board from PLAC/CCNU
- FPGA firmware and PC software

- Data Format
 - Data Short: 16 bits

2'b 01+4'b encoder id + 10'b address

BROADCAST COMMAND BROADCAST OPCODE IDLE IDLE Reset, Pulse, Debug MASTER DRIVER ON TRIGGER COMMAND TRIGGER IDLE IDLE Trigger MASTER DRIVER ON -Fast Trigger Decoding UNICAST WRITE AP REG ADDR [7:0] 🖌 REG ADDR [15:8] DATA [7:0] DATA [15:8] IDLE WRITE OPCODE CHIP ID IDLE **Register Write** MULTICAST WRITE WRITE OPCODE AP REG ADDR [7:0] S REG ADDR [15:8] IDLE MULTICAST ID DATA [7:0] DATA [15:8] IDLE MASTER DRIVER ON **Register Read** BUS TURNAROUND BUS TURNAROUND UNICAST READ A REG ADDR [7:0] 😤 REG ADDR [15:8] IDLE AP DATA [7:0] A DATA [15:8] READ OPCODE DLE CHIP ID (DLE IDLE CHIP ID **IDLE** IDLE MASTER DRIVER ON SLAVE DRIVER ON MASTER DRIVER ON-

pALPIDE-3 Hit Map C. Yang, Real Time 2018, Williamsburg

10 Pulse Test

Analogue Pulse Test

10/100 rows enabled 700 electrons injection

Analogue Pulse Test

10/100 rows enabled 70 electrons injection

- Designed for ALPIDE. X-ray imaging and beam monitoring
- Self-designed ALPIDE Bonding Board
- Redesigned DAQ Board
 - USB 3.0 / Gigabit Ethernet
 - External trigger

- Compatible with ALPIDE and pALPIDE-3
- Bonded at PLAC/CCNU

Location: National Synchrotron Radiation Laboratory (NSRL) X-ray apparatus: 50 kV, 40 mA

FPC material: 0.24 mm Polyimide Patterns: 1 ounce (~36µm) copper

C. Yang, Real Time 2018, Williamsburg

16 Grating Imaging

18 Efficiency Test

Location: Shandong Institute of Space Electronic Technology

Detection efficiency of ALPIDE to X-rays at different energies

Target	Energy (keV)	Calibrated Value cnt/(s*cm ²)	ALPIDE cnt/(s*cm ²)	Efficiency (%)
Ti	4.51	14.00	7.41	53.00
Cr	5.41	21.01	10.83	51.56
Fe	6.40	31.50	12.80	40.65
Cu	8.05	41.58	12.44	29.91

19 Next-step

- A 3 layers x 4 chips detector
- Other usages: space experiments

Dummy Ladder Board

- 2 DAQ systems were designed for pALPIDE-3 and ALPIDE chips.
- High resolution X-ray imaging was achieved.
- ALPIDE detection efficiency of soft X-ray was measured.

Acknowledgement: PLAC/CCNU, NSRL

