

# Lessons learned from Commissioning and first colliding beam data of the Belle II imaging Time-Of-Propagation Detector

Gary Varner on behalf of the Belle II TOP Group

University of Hawaii



# Upgrading Belle II PID Performance

- PID  $(\pi/K)$  detectors
  - Inside current calorimeter
  - Use less material and allow more tracking volume
  - → Available geometry defines form factor



#### imaging TOP (iTOP)

**Concept**: Use best of both TOP (timing) and DIRC while fit in Belle PID envelope



Use wide bars like proposed TOP counter

NIM A623 (2010) 297-299.



- Use new, high-performance MCP-PMTs for sub-50ps single p.e. TTS
- Use simultaneous T,  $\theta$ c [measured-predicted] for maximum K/ $\pi$  separation
- Optimize pixel size

# iTOP relativistic velocity

Space-time correlations/ Channel Vs. time for 3GeV pions/kaons with beam test setup Side view of crystal charged particle  $\theta c = \cos (1/n\beta)$ cherenkovangle time/ns Quartz:  $n = 1.471 \, (@\lambda = 390 \, \text{nm})$ 21.5 z-component of unit velocity 500 -200 -205 400 20.5 300 -215 220 200 -225 100 500 100 200 300 400 0 Channel **Beam Test Data** These are cumulative distributions 200 100 150

Channel number

### Actual PID is event-by-event

Test most probable distribution

Beamtest Experiment 2 Run 568 Event 1



# Performance Requirements (TOP)

Single photon timing for MCP-PMTs





NIM A602 (2009) 438



σ <~ 50ps target

NOTE: this is single-photon timing, **not** event start-time "T<sub>0</sub>"

# Mechanical complexity



#### **Readout Requirements**

- Very stringent requirements:
  - → 30 kHz trigger rate;
  - no deadtime;
  - low power consumption;
  - → ~500 MHz bandwidth;
  - excellent time resolution;
- The output of each electronics channel is sampled at 2.7GHz, with 12 bit resolution;
- No way we can transfer 265 Tbit/s, Feature Extraction (and pedestal subtraction) must be performed online.

128 channels in ~ 7 x 10 x 10 cm!

#### Fundamental FEE unit: the "boardstack"



Each boardstack reads out 1/4 of a TOP module (128 channels)



#### **TOP Readout overview**

#534 Itoh-san (Poster session 1)



TOP Readout Lessons - RT2018 Colonial Williamsburg

#### **IRSX ASIC Overview**



- 8 channels per chip @ 2.8 GSa/s
- Samples stored, 12-bit digitized in groups of 64
- 32k samples per channel (11.6us at 2.8GSa/s)
- Compact ASICs implementation:
  - Trigger comparator and thresholding on chip
  - On chip ADC
  - Multi-hit buffering





#### Readout Verification (pre-install, in-situ)



#### Quartz: procurement, verification

#### 3 very challenging items: Quartz Radiator/optics #1

- Bars:
   1250 x 450 x 20 mm³
   two bars per module
- Mirrors:
   100 x 450 x 20 mm<sup>3</sup>
- Prisms: 100 mm long, 456 x 20 mm<sup>2</sup> at bar face expanding to 456 x 50 cm<sup>2</sup> at MCPPMTs
- ► Material: Corning 7980
- DIN58927 class 0 material has no inclusions (inclusions ≤0.1 mm diameter are disregarded)
- Grade F (or superior) material having index homogeneity of ≤5 ppm over the clear aperture of the blank; verified at 632.8 nm
- Birefringence / Residual strain ≤1 nm/cm



# Quartz gluing, Module Assembly



Optics: alignment, gluing, curing and aging (~2 weeks).

Enclosure: gluing CCDs and LEDs, integrating fiber mounts.

QBB: strong back flattening, button & enclosure gluing.



Put on a cart. PMT and frontend integration, performance check.

QBB assembly and gas sealing.

Move optics to QBB using the "lifting jig".



### **Installation Complete (May 2016)**



TOP Readout Lessons - RT2018 Colonial Williamsburg

#### After installation – continued development



#### **Timing alignment**

Effectively need fine tuning for all 8192 channels of TOP;



Current status: precision ~100 ps (but still margin for improvement!).



#### **Module Timing alignment**

Idea: use cosmic events to align in time all TOP modules:



- Compare photon detection times for cosmic rays that hit two different modules, taking into account time of flight and different propagation times;
- Minimize a χ<sup>2</sup> to find the best calibration constants (one module taken as reference);

 Crosscheck with laser system (uncertainty from uniformity of fiber lengths) shows excellent consistency!



Length mismatch due to timing cables

#### **Cosmic Ray calibration data**

 TOP joined the Global Cosmic Runs with other Belle II subdetectors since last Summer (>50M events recorded);

 Debugging opportunity + first performance assessment:



Points: detected photons

Colored bands: pdf



Very reasonable performance, despite calibration being still far from perfect!

cosmic-ray muon

3. Time of Flight

Propagation time

#### **First Collision Data**

#### "Phase 2" (collisions) started in in April

- TOP stably included in DAQ, should have no problem coping with the expected rates this year;
- Hit rates give a robust measurement of (gradually improving) beam background conditions;
- We can use two-track events to determine the event T<sub>0</sub> and align with the other subdetectors;
- Cannot show PID performance on collision data yet: we need to reprocess the data with final calibrations... and collect large samples of K<sub>s</sub>, D\*, Λ, ...





# "Fake" Summary Belle II TOP Detector Readout status

#### Present status:

- > Many small Production Firmware issues
- > Readout basically working

#### Phase 2 (no vertexing):

- > Detector alignment
- > Di-muon, event T0 calibration
- > Verify PDFs

#### Phase 3 readiness (early 2019):

- > Basically ready
- > Speeding up digitization, feature extraction



ALICE, I'VE NOTICED A
DISTURBING PATTERN.
YOUR SOLUTIONS TO
PROBLEMS ARE ALWAYS
THE THINGS YOU TRY LAST.

lliamsburg

# **Student Question?**



Point A Point B

What is the Shortest Distance Between 2 points A & B??

#### One answer



Point A Point B

The cynic might answer:



# Another view





The answer is usually more subtle

#### The full calibration suite

#### Time Base Calibration

Ensure the linearity of time digitization: performed by measuring the interval of double charge pulses across the sampling range

#### Module T₀ Calibration

Align in time all modules of the TOP counter, using cosmics and collision data

#### Common T<sub>o</sub> Calibration

Align in time with the other Belle II subdetectors

#### Local T<sub>0</sub> Calibration

Align in time all channels within a module, using the laser calibration system

#### Geometrical Alignment

Determine the actual position of each TOP module in the common reference frame using collision (cosmic) data

GOAL: uncertainty < 100 ps on the single detected photons

#### **Timebase Calibration**

#### Took a while to get new FW release, SW work continued

/group/belle2/users/wangxl/iTOP/TBC/DB201612b/xval/. The data of run3523 and run3524 are also processed and skimed, and finally saved at /ghi/fs01/belle2/bdata/group/detector/TOP/Skim-wangxl/2016-12/.



FIG. 1: Example of calculation on Slot\_01 ASIC\_00. (a) is the shape of time difference ( $\Delta T$ ) of the double pulses in channel\_7 from the raw data, (b) is the dime difference after correction, (c) is the project of  $\Delta T$  after correction and a fit performed to the distribution to show the mean and the resolution of  $\Delta T$ , (d) shows how the  $\chi^2$  values change in the iterations of calculation.



FIG. 2: Summary of calculation results of the 64 ASICs of Slot\_01. Plot (a) is means of the time difference of double pulses, and (b) is the time resolution.

#### Region of Interest and Feature Extraction



Region of Interest and Feature Extraction Firmware running on Zynq "PS" side – too slow at highest rates

### Single p.e., why bother?

- Postulate 1 (background level stays constant)
  - PMT gain: 5 x 10<sup>5</sup>
  - Background hit rate: 500 kHz/PMT on average
  - Total exposure time in phase2: 10 hours/day x 60 days =  $2.16 \times 10^6$  sec
  - $\rightarrow$  0.016 C/cm<sup>2</sup> (could be acceptable)
- Postulate 2 (background level normalized by the luminosity)
  - PMT gain: 5 x 10<sup>5</sup>
  - Background hit rate and luminosity at this moment:
     500 kHz/PMT and 8 x 10<sup>32</sup> /cm<sup>2</sup>/s on average
  - Integrated luminosity in phase2: 20 fb<sup>-1</sup>
  - $\rightarrow$  0.189 C/cm<sup>2</sup> (not acceptable)

cf. life of conventional MCP-PMT = 0.3-1.8 C/cm<sup>2</sup>

K. Matsuoka (Nagoya) – 50% of PMTs are conventional

# Gain and Efficiency





laser efficiency ASIC 3, ch 3 (gain = 4x), HV2901



laser efficiency ASIC 3, ch 3 (gain = 4x), HV3051



Trigger Efficiency vs. Extr. Gain



#### Low PMT Gain Operation

- current feature extraction uses constant fraction discrimination to extract signal timing
- resolution deteriorates at small signal amplitudes



- use template fitter to improve resolution at small amplitudes/high noise
- **Necessary to maximize MCP lifetime**

Studying how best to implement (PS is probably too slow)

- using laser data from Hawaii test setup
- TProfile to get waveform template
- fit with central Gaussian and exponential tail





# Multi-hit Analog Buffer Management



# 30kHz L1, high occupancy emulation



30kHz L1 trigger, 10 MHz background photons/PMT, multi-hit, multi-event buffering





At 400 SSTin Cycles (~19us per single photon hit), can run at 50kHz, so plenty of margin

# Firmware Complexity (100k lines of code...)



# **True Summary**

# Belle II TOP Detector Readout status



TOP Readout Lessons - RT2018 Colonial Williamsburg

# **True Summary**

#### Belle II TOP Detector Readout status

#### The Good:

- > Mostly things are working as designed
- Quite a bit of margin for increased performance

#### • The Bad:

- > Programing and configuration lengthy
- > At thermal limit

#### The Ugly

- > Detector installed 2 years ago, Production FW still a work in progress
- > Very complicated (huge barrier to entry)

# What might do differently?

### 1. Programming and Configuration

- > Higher speed JTAG interface (or ...)
- > Taking on both Vivado and Zynq (SDK)?

#### 2. Architecture

- ➤ High speed serial communications reduce to single FPGA?
- > Dedicated amplifier ASIC?

#### 3. ASIC

- > Simpler storage scheme
- ➤ Incorporate simple buffer management, readout state machines on chip

# Back-up slides



## iTOP Readout "boardstack"

(1 of 4 per TOP Module)













# PMT Replacement



- The 224 conventional MCP-PMTs in the 7 slots have to be replaced due to the QE degradation by the beam background.
- In 2015 the time of the replacement was estimated as the 2020 summer shutdown.
- → Revisit the estimation.
- Need additional mass production of the MCP-PMTs for the replacement.
- $\rightarrow$  Discuss the production plan.



"1x BG"

#### **Direct hitmap**



TOP Readout Lessons - RT2018 Colonial Williamsburg

### Single photon timing



# Geometrical Alignment

- Still missing: precise determination of actual position of TOP modules;
- Strategy: select a sample of muons, and iteratively maximize the Likelihood L<sub>μ</sub> varying the shifts Δx, Δy, Δz and rotation angles α, β, γ about the three coordinate axes;
- With e<sup>+</sup>e<sup>-</sup> → μ<sup>+</sup>μ<sup>-</sup> events, can get a precision of ~0.3 mm on the shifts

and 0.3 mrad on the rotation angles;

 Tested the procedure on cosmic data (some biases are expected).

Alignment on 5 independent samples of cosmic data.
Very preliminary!



# PMT Rotation Update (2 rotation issues)

 The PMT tube is made of Kovar and suffers ~1 kgf/PMT in 1.5 T (maximum ~1.4 kgf/PMT in ~1.1 T).

#### Rotation of PMT module

- Large effect on photon transmittance due to bubbles of the optical oil on the Si cookie
- Has been fixed in situ by shimming

#### Rotation of PMT

- Effect only for photons of larger incident angles than ~43° if the peeloff surface is clear.
- Wil be fixed if necessary after phase 2



| Year             | 2017 |       |      |       | 2018 |       |                            |    | 2019 |       |    |     | 2020   |      |       |
|------------------|------|-------|------|-------|------|-------|----------------------------|----|------|-------|----|-----|--------|------|-------|
| Month            | 1    | 4     | 7    | 10    | 1    | 4     | 7                          | 10 | 1    | 4     | 7  | 10  | 1      | 4    | 7     |
| Global schedule  |      |       |      |       | Phas | e 2   |                            |    | Phys | ics r | un | Phy | sics r | un   |       |
| PMT production   | Curr | ent p | rodu | ıctio | n    |       |                            |    |      |       |    |     |        |      |       |
|                  |      |       | Ano  | ther  | smal | l pro | ducti                      | on |      |       |    |     |        |      |       |
|                  |      |       |      |       |      |       | Mass production if necessa |    |      |       |    | ry  |        |      |       |
| PMT test         |      |       |      |       |      |       |                            |    |      |       |    |     |        |      |       |
| PMT installation |      |       |      |       |      |       |                            |    |      |       |    |     | Ass    | y Ir | stall |

Study of physics impact of decoupled PMTs (Modest effect)





Plan in place to replace  $\sim 50\%$  of PMTs reparrence  $\sim 50\%$  of PMTs reparrence  $\sim 50\%$  of PMTs represented  $\sim 50\%$  of PMT

#### **PERFORMANCE SUMMARIES**



#### **Verification: Event Time Zero**



### **Verification: Event Trigger Time**



# Production single photon testing



