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Conclusions

ź Plasma Current and Shape Controller (PCSC) 
for ITER 

ź Singular Value Decomposition (SVD) -based 
Model Predictive Control (MPC) using 
a  dual Fast Gradient Method (dFGM)
quadratic programming (QP) solver

ź FPGA acceleration with a High-Level 
Synthesis (HLS) approach

The  automatic conversion does not yield useful results 
from the original C code, because the code structure 
prevents automated application of conversion 
optimization routines, so that the execution time is 
45 ms, which is much longer than the CPU 
implementation, with low use of resources 

After a series of manual modifications of the code with 
pragma directions, the computation time for Xilinx 
ZC706 is reduced to . 1 ms (3x faster than CPU)

Further acceleration is presumably possible by using a 
FPGA with hardware flow-point multipliers, or by 
using fixed-point arithmetics (lower dynamic range)   
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FPGA acceleration of Model Predictive Control 
for ITER Plasma current and shape control

SVD-based fast MPC PCSC block scheme

In MPC, a QP optimisation problem must be solved in each 
time step of the algorithm, which is difficult with large-scale 
multivariable systems with fast dynamics. 
Using complexity reduction techniques for MPC and C code 
optimisation, with the dFGM algorithm the required accuracy 
was achieved in 500 iterations with peak computation times 
3 ms using a standard Intel x86 CPU using a single thread.
This is considered , sufficiently fast for ITER but not for 
experimantation on smaller tokamaks with faster dynamics.
The execution of the dFGM algorithm may be accelerated by 
parallelisation of matrix-vector numerical operations within 
iterations, but this is not well-suited for the standard CPU 
architecture with the thread scheduler timescale 10 ms, 
thread synchronisation takes more time than computation. 

Solving QP problems for MPC using dFGM
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MPC is an advanced model-based process control technique, 
based on on-line optimization of predicted future courses of 
the process signals. Typically, a simplified control model in 
the discrete-time linear state space form is used, and the 
MPC controller is used in conjunction with a Kalman state 
estimator. It is closely related to LQ (linear quadratic) 
optimal control, and is convenient for control of multivariable 
processes such as PCSC. It is efficient in handling of 
constraints - in the case of ITER PCSC: 
- input constraints of the power supply voltages VPF  

.- output constraints of the superconductive coil currents IPF

Model Predictive Control (MPC)

FPGA implementation , but supports small-scale paralellism
they have other issues regarding the implementation of 
complex algorithms: , relatively low clock frequencies limited 
resources for massive parallelism, . specific programming
Aiming to avoid manual recoding as much as possible, the 
High-Level Synthesis (HLS) approach of Xilinx Vivado HLS 
was adopted:  
- C code (simplifications required: static allocation of 
variables, direct implementation of functions)
- emulated single float precision (multiple cycles/operation)
- conversion directives (pragma commands) to the VHDL 
compiler for more optimized implementation:
pipeline, loop unroll, loop merge, array partition 
- hardware: Xilinx Zedboard, Zc706

The dFGM  must be optimized for speed. main iteration loop
Its computational load is dominated by two matrix-vector 
multiplications (33x99 * 99 and 99x33 * 33), while other 
vector operations represent less than 10% of the workload. 

FPGA implementation

P2-0001

Matrix-vector multiplication implementation

Approach 1 (initial)

Approach 2 (inner loop unroll)

Approach 3 (scalar product tree-sum)

Approach 4 (tall matrix truncation)

        // mat_vec_mult_full(d->M, ws->v, ws->tmp_var_n); 
        mv_mult__M_x_v: for(j = 0; j < n_constraint; j++) 
        { 
            vv_mult__M_x_v: for(i = 0; i < n_opt_var; i++) 
            { 
                tmp_var_n[i] += M[i][j] * v[j]; 
            } 
        } 

        #pragma HLS ARRAY_PARTITION variable=M complete dim=1 
        #pragma HLS ARRAY_PARTITION variable=n complete 
        mv_mult__M_x_v: for(j = 0; j < n_constraint; j++) 
        { 
            #pragma HLS PIPELINE 
            vv_mult__M_x_v: for(i = 0; i < n_opt_var; i++) 
            { 
                #pragma HLS UNROLL 
                tmp_var_n[i] += M[i][j] * v[j]; 
            } 
        } 
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Time schedule for parts Mi,j×vj of M×v product . 

Unroll the inner i loop (dimension m)

Partition M (dimension m)

Partition r (dimension m)

Pipeline the outer j loop
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Timing schedule of M×v product, with parallelized inner loop. 

Multiplication as series of scalar products:

Binary-tree-wise parallel summation:

 

Parallelized calculation of vector scalar product (m atrix line Mi×v). 

Vertically divide M into p wide matrices M , ..., M  and 1 p

process them in parallel

        mv_mult__C_x_x: for(i = 0; i < 33; i++) //(i = 0; i < n_constraint; i++)  
        { 
 #pragma  HLS PIPELINE  
         vv_mult__C_ x_x: for(j = 0; j < n_opt_var; j++)  
            { 
  #pragma  HLS UNROLL //factor=33  
                //tmp_var_p4[i] += C[i][j] * x[j];  
                tmp11[j] = C[i][j] * x[j];  
                tmp21[j] = C[i+33][j] * x[j];  
                tmp31[j] = C[i+66 ][j] * x[j];  
            } 
            reset_tmp_rest_m2: for (j=n_opt_var;j<128;j++)  
            { 
             #pragma  HLS UNROLL  
             tmp11[j] = 0.0;  
             tmp21[j] = 0.0;  
             tmp31[j] = 0.0;  
            } 
            sum2m2: for (j=0;j<32;j++)  
            { 
                #pragma  HLS UNROLL  
                tmp12[j] = tmp11[j]+tmp11[j+32];  
                tmp22[j] = tmp21[j]+tmp21[j+32];  
                tmp32[j] = tmp31[j]+tmp31[j+32];  
            } 
            sum3m2: for (j=0;j<16 ;j++)  
            { 
                #pragma  HLS UNROLL  
                tmp11[j] = tmp12[j]+tmp12[j+16];  
                tmp21[j] = tmp22[j]+tmp22[j+16];  
                tmp31[j] = tmp32[j]+tmp32[j+16];  
            } 
            sum4m2: for (j=0;j<8;j++)  
            { 
                #pragma  HLS UNROLL  
                tmp12[j] = tmp11[j]+tmp11[j+8];  
                tmp22[j] = tmp21[j]+tmp21[j+8];  
                tmp32[j] = tmp31[j]+tmp31[j+8];  
            } 
            sum5m2: for (j=0;j<4;j++)  
            { 
                #pragma  HLS UNROLL  
                tmp11[j] = tmp12[j]+tmp12[j+4];  
                tmp21[j] = tmp22[j]+tmp22[j+4];  
                tmp31[j] = tmp32[j]+tmp32[j+4];  
            } 
            tmp12[0] = tmp11[0]+tmp11[2];  
            tmp12[1] =  tmp11[1]+tmp11[3];  
            tmp_var_p4[i] = tmp12[0] + tmp12[1];  
            tmp22[0] = tmp21[0]+tmp21[2];  
            tmp22[1] = tmp21[1]+tmp21[3];  
            tmp_var_p4[i+33] = tmp22[0] + tmp22[1];  
            tmp32[0] = tmp31[0]+tmp31[2];  
            tmp32[1] = tmp31[1]+tmp31[3];  
            tmp_var_p4[i+66] = tmp32[0] + tmp32[1];  
        } 

Matrix-vector multiplication operation count (in clock cycles)  

Status 

Iteration* 

latency (Lat) 

Initiation* 

Interval (II) 

Iteration* 

count (It) 

Total latency 

(It*II + Lat) 

     
Iinitial m m +3 n n*(m+3) (+n**) 

Inner unroll 12 4 n n* 4 + 12 

Scalar product tree-sum 32 1 m m + 32 

Tall matrix truncation 32 1 m/p m/p + 32 

* The parameters are stated for the outer loop  

** The additional n clocks are required to enter the inner loop n-times. This is handled using loop flatten 

MPC QP, hard constraints

MPC QP, soft state constraints

Dual FGM algorithm
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