
Overview

Conclusions

ź Plasma Current and Shape Controller (PCSC)
for ITER

ź Singular Value Decomposition (SVD) -based
Model Predictive Control (MPC) using
a dual Fast Gradient Method (dFGM)
quadratic programming (QP) solver

ź FPGA acceleration with a High-Level
Synthesis (HLS) approach

The automatic conversion does not yield useful results
from the original C code, because the code structure
prevents automated application of conversion
optimization routines, so that the execution time is
45 ms, which is much longer than the CPU
implementation, with low use of resources

After a series of manual modifications of the code with
pragma directions, the computation time for Xilinx
ZC706 is reduced to . 1 ms (3x faster than CPU)

Further acceleration is presumably possible by using a
FPGA with hardware flow-point multipliers, or by
using fixed-point arithmetics (lower dynamic range)

a a aSamo Gerkšič , Boštjan Pregelj , Matija Perne a Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

FPGA acceleration of Model Predictive Control
for ITER Plasma current and shape control

SVD-based fast MPC PCSC block scheme

In MPC, a QP optimisation problem must be solved in each
time step of the algorithm, which is difficult with large-scale
multivariable systems with fast dynamics.
Using complexity reduction techniques for MPC and C code
optimisation, with the dFGM algorithm the required accuracy
was achieved in 500 iterations with peak computation times
3 ms using a standard Intel x86 CPU using a single thread.
This is considered , sufficiently fast for ITER but not for
experimantation on smaller tokamaks with faster dynamics.
The execution of the dFGM algorithm may be accelerated by
parallelisation of matrix-vector numerical operations within
iterations, but this is not well-suited for the standard CPU
architecture with the thread scheduler timescale 10 ms,
thread synchronisation takes more time than computation.

Solving QP problems for MPC using dFGM

1

Vmc

kfCSC_ABC

State Estimator
Saturation

Msel* u

States

References

Control Action

t_solve

MPC Controller

uhat

yhatsvd

ctime

xhat

6

Gaps_ref

5

Ip_ref

4

IPF_ref

3

Gaps

2

Ip

1

IPF

dFGMSVD

MPC is an advanced model-based process control technique,
based on on-line optimization of predicted future courses of
the process signals. Typically, a simplified control model in
the discrete-time linear state space form is used, and the
MPC controller is used in conjunction with a Kalman state
estimator. It is closely related to LQ (linear quadratic)
optimal control, and is convenient for control of multivariable
processes such as PCSC. It is efficient in handling of
constraints - in the case of ITER PCSC:
- input constraints of the power supply voltages VPF

.- output constraints of the superconductive coil currents IPF

Model Predictive Control (MPC)

FPGA implementation , but supports small-scale paralellism
they have other issues regarding the implementation of
complex algorithms: , relatively low clock frequencies limited
resources for massive parallelism, . specific programming
Aiming to avoid manual recoding as much as possible, the
High-Level Synthesis (HLS) approach of Xilinx Vivado HLS
was adopted:
- C code (simplifications required: static allocation of
variables, direct implementation of functions)
- emulated single float precision (multiple cycles/operation)
- conversion directives (pragma commands) to the VHDL
compiler for more optimized implementation:
pipeline, loop unroll, loop merge, array partition
- hardware: Xilinx Zedboard, Zc706

The dFGM must be optimized for speed. main iteration loop
Its computational load is dominated by two matrix-vector
multiplications (33x99 * 99 and 99x33 * 33), while other
vector operations represent less than 10% of the workload.

FPGA implementation

P2-0001

Matrix-vector multiplication implementation

Approach 1 (initial)

Approach 2 (inner loop unroll)

Approach 3 (scalar product tree-sum)

Approach 4 (tall matrix truncation)

 // mat_vec_mult_full(d->M, ws->v, ws->tmp_var_n);
 mv_mult__M_x_v: for(j = 0; j < n_constraint; j++)
 {
 vv_mult__M_x_v: for(i = 0; i < n_opt_var; i++)
 {
 tmp_var_n[i] += M[i][j] * v[j];
 }
 }

 #pragma HLS ARRAY_PARTITION variable=M complete dim=1
 #pragma HLS ARRAY_PARTITION variable=n complete
 mv_mult__M_x_v: for(j = 0; j < n_constraint; j++)
 {
 #pragma HLS PIPELINE
 vv_mult__M_x_v: for(i = 0; i < n_opt_var; i++)
 {
 #pragma HLS UNROLL
 tmp_var_n[i] += M[i][j] * v[j];
 }
 }

 t=1 t=2 t=3 ··· t=7 t=8 t=9 ··· t=12 t=13 t=14

i=1
j

RD M i,j

RD v j × × × ×

 RD r i + + + WR r i

i=2
j

 RD M i+1,j

 RD v j+1 × × × ×

 RD r i+1 + + + WR r i+1

i=3
j

 RD M i+2,j

 RD v j+2 × × × ×

 RD r i+2 + + + WR r i+2

Time schedule for parts Mi,j×vj of M×v product .

Unroll the inner i loop (dimension m)

Partition M (dimension m)

Partition r (dimension m)

Pipeline the outer j loop

 t=1 … t=5 t=7 … t=11 t=9 t=10

j=1

i=1
RD Mi,j

RD vi × × ×

 RD ri + WR ri

∙ ∙ ∙ ··· ··· ··· ··· ··· ···

i=m
RD Mi,j

RD vj × × ×

 RD ri+2 + WR ri+2

i=1

 RD Mi,j

 RD vj × ×

 RD ri+2 + WR ri+2

 t=1 ··· t=5 ··· t=13 ··· ··· (n-1)*4 +1 (n-1)*4+12

j=1

i=1

··· ⁞

m

j=2

i=1

··· ⁞

m

 ··· ∙ ∙ ∙ ··· ··· ··· ··· ··· ··· ··· ···

j=n

i=1

··· ⁞

m

Timing schedule of M×v product, with parallelized inner loop.

Multiplication as series of scalar products:

Binary-tree-wise parallel summation:

Parallelized calculation of vector scalar product (m atrix line Mi×v).

Vertically divide M into p wide matrices M , ..., M and 1 p

process them in parallel

 mv_mult__C_x_x: for(i = 0; i < 33; i++) //(i = 0; i < n_constraint; i++)
 {
 #pragma HLS PIPELINE
 vv_mult__C_ x_x: for(j = 0; j < n_opt_var; j++)
 {
 #pragma HLS UNROLL //factor=33
 //tmp_var_p4[i] += C[i][j] * x[j];
 tmp11[j] = C[i][j] * x[j];
 tmp21[j] = C[i+33][j] * x[j];
 tmp31[j] = C[i+66][j] * x[j];
 }
 reset_tmp_rest_m2: for (j=n_opt_var;j<128;j++)
 {
 #pragma HLS UNROLL
 tmp11[j] = 0.0;
 tmp21[j] = 0.0;
 tmp31[j] = 0.0;
 }
 sum2m2: for (j=0;j<32;j++)
 {
 #pragma HLS UNROLL
 tmp12[j] = tmp11[j]+tmp11[j+32];
 tmp22[j] = tmp21[j]+tmp21[j+32];
 tmp32[j] = tmp31[j]+tmp31[j+32];
 }
 sum3m2: for (j=0;j<16 ;j++)
 {
 #pragma HLS UNROLL
 tmp11[j] = tmp12[j]+tmp12[j+16];
 tmp21[j] = tmp22[j]+tmp22[j+16];
 tmp31[j] = tmp32[j]+tmp32[j+16];
 }
 sum4m2: for (j=0;j<8;j++)
 {
 #pragma HLS UNROLL
 tmp12[j] = tmp11[j]+tmp11[j+8];
 tmp22[j] = tmp21[j]+tmp21[j+8];
 tmp32[j] = tmp31[j]+tmp31[j+8];
 }
 sum5m2: for (j=0;j<4;j++)
 {
 #pragma HLS UNROLL
 tmp11[j] = tmp12[j]+tmp12[j+4];
 tmp21[j] = tmp22[j]+tmp22[j+4];
 tmp31[j] = tmp32[j]+tmp32[j+4];
 }
 tmp12[0] = tmp11[0]+tmp11[2];
 tmp12[1] = tmp11[1]+tmp11[3];
 tmp_var_p4[i] = tmp12[0] + tmp12[1];
 tmp22[0] = tmp21[0]+tmp21[2];
 tmp22[1] = tmp21[1]+tmp21[3];
 tmp_var_p4[i+33] = tmp22[0] + tmp22[1];
 tmp32[0] = tmp31[0]+tmp31[2];
 tmp32[1] = tmp31[1]+tmp31[3];
 tmp_var_p4[i+66] = tmp32[0] + tmp32[1];
 }

Matrix-vector multiplication operation count (in clock cycles)

Status

Iteration*

latency (Lat)

Initiation*

Interval (II)

Iteration*

count (It)

Total latency

(It*II + Lat)

Iinitial m m +3 n n*(m+3) (+n**)

Inner unroll 12 4 n n* 4 + 12

Scalar product tree-sum 32 1 m m + 32

Tall matrix truncation 32 1 m/p m/p + 32

* The parameters are stated for the outer loop

** The additional n clocks are required to enter the inner loop n-times. This is handled using loop flatten

MPC QP, hard constraints

MPC QP, soft state constraints

Dual FGM algorithm

	Page 1

