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J-PARC rapid cycling synchrotron (RCS)
RCS is a very high intensity proton driver, which delivers beams to Material and
Life Science Experimental Facility (MLF) and main ring synchrotron (MR).

• Magnetic alloy (MA) cavities employed
- high rf voltage, 440 kV by 12 cavities
- driven by high power tetrode tube amp
- Wideband, Q = 2

parameter
circumference 348.333 m

energy 0.400–3 GeV
beam intensity 8.3 × 1013 ppp
beam power 1 MW

repetition rate 25 Hz
accelerating freq 1.22–1.67 MHz
harmonic number 2
max rf voltage 440 kV
No. of cavities 12
Q of rf cavity 2

MA cavity and tube amplifier:
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Wideband (Q = 2) MA cavity
Frequency response of Q = 2 cavity:

Dual harmonic voltage:

• No tuning bias loop necessary to
follow accelerating frequency sweep
(h = 2)

- Ferrite cavity requires it
• Dual harmonic operation

- A single cavity driven by
superposition of accelerating and
second harmonic rf (h = 2, 4)

- Bunch shaping using second harmonic
is indispensable for high intensity
acceleration

• Wake voltage is multiharmonic;
multiharmonic beam loading
compensation is necessary

LLRF is responsible for driving MA
cavity with these requirements.
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Wideband (Q = 2) MA cavity

Measured wake voltage waveform:

• No tuning bias loop necessary to
follow accelerating frequency sweep
(h = 2)
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Existing LLRF control system

main block feedforward block
(h=2,4,6) 

• Developed JFY 2003–2006, in operation since 2007
• Consists of specialized 9U height VME modules

- P1: VME
- P2, P3: specialized parallel bus for signal distribution
- Virtex II pro and Spartan-II used

• System clock: 36 MHz
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LLRF functions for RCS
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• (Blue) common functions for whole system
• (Red) for each of 12 cavities
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For frequency sweep:
• Revolution frequency pattern
• Phase accumulator generates revolutional phase signal from −π to π.

Multiplying h, higher harmonic phase signal generated
• h = 2, 4 phase signals distributed to modules
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LLRF functions for RCS
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Dual harmonic cavity voltage control:
• for each of 12 cavities
• (Scalar) amplitudes of h = 2, 4 controlled by feedback loops

F. Tamura et al., Phys. Rev. ST Accel. Beams, vol. 11, 072001, 2008
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Beam feedback loops:
• Radial loop for correction of frequency using BPM signal

- Implemented but not used
• Phase loop for damp the longitudinal oscillations

- Compares phases of beam and cavity vector sum
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Vector sum function:
• Detected I/Q cavity voltage of the harmonic is rotated and sent to the vector

sum module
- Rotation angle corresponds to the cavity position in RCS ring

• Summation signal is normalized by number of cavities
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LLRF functions for RCS
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Multiharmonic feedforward for beam loading compensation:
• Pick up beam current signal by WCM
• FF compensation signal generated so that −ibeam is fed to the cavity in addition

to driving current, to cancel wake voltage. h = 1..6 are compensated
F. Tamura et al., Phys. Rev. ST Accel. Beams, vol. 14, 051004, 2011
F. Tamura et al., Phys. Rev. ST Accel. Beams, vol. 18, 091004, 2015
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LLRF functions for RCS
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Miscellaneous functions (not shown in diagram):
• Kicker trigger, linac chopper gate pulse generation
• Revolution clock for measurement

RT2018, Williamsburg, Fumihiko Tamura Development of next generation LLRF control system for J-PARC rapid cycling synchrotron 7
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The existing system has been working well without major
problems for more than ten years.
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Why new system?

Although the existing system working well. . .
• Old FPGAs (Xilinx Virtex-II pro and others) used in the

modules are already discontinued and not supported by the
current development environment

• We have spare modules, but it will be difficult to maintain the
system in near future

Therefore, we decided to develop new system.

Considerations:
• All functions except radial loop to be implemented
• Generic FPGA module + I/O module for specific function

preferred
- Existing modules are different for functions
- Easier management of spares expected
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System overview

MicroTCA.4 is employed for next generation system.
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Multipurpose AMC by Mitsubishi Electric TOKKI systems

• Modern SoC FPGA, Xilinx Zynq XC7Z045
- EPICS IOC with Linux embedded, setting / monitoring by CA
- I/Q Waveform monitor is useful for commissioning

• 1 GB SDRAM used as pattern memory
• 8x ADC, 2xDAC

- An AMC can handle two cavities
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Common function module
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• Receives triggers/modes. Generates CTRL/PATN clocks. Distributed to
modules via backplane

• Revolution frequency pattern memory, f1 distributed to the modules
- Existing system: phase signals (h = 2, 4)
- More flexibility for multiharmonic rf generation in cavity drivers

Below are not implemented yet:
• Phase feedback, WCM beam signal analysis for rf feedforward
• Miscellaneous functions (kicker trigger / chopper pulse generation)
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Cavity driver module
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• Can control two cavities, thanks to logic capacity of modern FPGA
• Phase accumulator generates phase signal
• Multiharmonic vector rf voltage control and feedforward (not implemented yet)

RT2018, Williamsburg, Fumihiko Tamura Development of next generation LLRF control system for J-PARC rapid cycling synchrotron 13



Current status

The system was built in JFY 2017.

MCH high speed serial
communication module

cavity driver module
common function module

connector panel

We have at present:
• Infrastructures (shelf,

PM, CPU, MCH)
• 1x common function

module
• 1x cavity driver module
• 1x high speed serial

communication module
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Key features (1): multiharmonic vector rf voltage control
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Existing system: dual harmonic, scalar amplitude control
→ New: multiharmonic vector rf voltage control
• Number of harmonics increased, thanks to capacity of Zynq
• Phase control possible
• can compensate beam loading
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Key features (1): multiharmonic vector rf voltage control
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Input: cavity voltage, output: multiharmonic rf signal.
Eight FB blocks (h = 1..8).
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FB out

CORDIC

I/Q voltage 
pattern setpoint (I)

setpoint (Q)

cos sin

CORDIC

cos sin

gain LUT

gain
phase offset 

LUT phase offset

phase signal (h=hn)

harmonic  
number(hn)

phase signal (h=1)

cavity
voltage

from ADC feedback blocks for h=1...8

SUM
(h=1...8) 

multiharmonic
rf signal 

frequency (h=1)

frequency (h=hn)

LPF 
(CIC)

PI 
controller

I - +

LPF 
(CIC)

PI 
controller

Q - +

Well-known I/Q feedback structure:
I/Q demodulator, setpoint, PI control, and I/Q modulator.
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Phase signal and frequency of the selected harmonic obtained by multiplying
revolution phase signal and f1 with harmonic number hn. Used for I/Q demod/mod
and addressing of LUT. LUTs are necessary for frequency sweep.
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Phase offset LUT gives phase offset between I/Q demodulator and modulator, to
control phase transfer function as well as to compensate frequency response of
1-turn transfer function.
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Gain LUT compensates cavity frequency response.
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Key features (1): multiharmonic vector rf voltage control
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Finally, multiharmonic rf signal obtained by summing up the signals from blocks.
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Multiharmonic rf generation
Demonstration of multiharmonic rf generation: Sawtooth wave

Fourier series of a sawtooth
wave up to m-th harmonic:

f(t) =
2
π

m∑
h=1

(−1)h+1

h
sin hω1t

• ω1: revolution angular freq
• Unity amplitude
• h: harmonic number

Test setup:

cavity
driver

module 

DUT
 

amplifier chain
+ cavity

or
4m cable 

cav1 in

cav1 out

oscilloscope

• DUT: amplifier chain + cavity

For m = 8,

f(t) =
2
π

(
sinω1t −

1
2
sin 2ω1t +

1
3
sin 3ω1t · · · −

1
8
sin 8ω1t

)
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Multiharmonic rf generation
Measured I/Q amplitude: Waveform comparison, calc/meas:

• ω1 = 2π · 1 MHz
• (I1, Q1) = (0, 3000) for h = 1, higher harmonics according to the

equation
• Measured amplitudes close to the set points
• Calc and meas waveforms agree very well
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Multiharmonic rf generation
Fourier series of a square wave
(h = 2n − 1):

f(t) =
4
π

m∑
n=1

1
2n − 1

sin(2n − 1)ω1t

=
4
π

(
sinω1t +

1
3
sin 3ω1t

+
1
5
sin 5ω1t +

1
7
sin 7ω1t

)

Waveform comparison, calc/meas:

Multiharmonic vector rf control works nicely:
• Existing system: dual harmonic (h = 2, 4), scalar amplitude

control
• New system: eight harmonics, vector control

- Bunch shaping using third/fourth (h = 6, 8) harmonics in addition
to second (h = 4) harmonic is possible

- Beam loading compensation done by voltage control (existing: FF
only)
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Key features (2): high speed serial communication

Vector sum:

SUM

cavity #1
gap

voltage
I/Q demod rotation,

gain 

gain phase

normalize

number of
cavities

vector sum
IQ

to phase FB 

cavity #2
gap

voltage
I/Q demod rotation,

gain 

gain phase

rotated
I/Q 

cavity #12
gap

voltage
I/Q demod rotation,

gain 

gain phase

Vector sum module

main block feedforward block
(h=2,4,6) 

cable for IQ transfer

Signal transfer is star topology.
• Vector sum:

Cavity IQs (drivers)
→ vector sum → phase FB

• Phase FB signal (common)
→ volt control (driver modules)

Existing system uses cables and parallel
backplane.
• Not very sophisticated

How can we realize star topology
with MicroTCA.4?
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Key features (2): high speed serial communication

• There are no trivial star-like connections among AMCs
• Idea: putting FPGA logic in MCH2 slot and using Port1, although it sacrifices redundancy of MCH
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FP
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A
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Key features (2): high speed serial communication

Signal flow using Port1:
high speed serial

communication module
in MCH2 slot 

WCM IQ, phaseFB

cav11,12 IQ (h=1...8)

WCM IQ, phaseFB

cav9,10 IQ (h=1...8)

WCM IQ, phaseFB
cav1,2 IQ (h=1...8)

vector sum (h=1...8) 

WCM IQ, phaseFB
(h=1..8) 

ca
vi

ty
 d

riv
er

 #
6

ca
vi

ty
 d

riv
er

 #
5

ca
vi

ty
 d

riv
er

 #
1

co
m

m
on

 fu
nc

tio
n 

m
od

ul
e

AU
R

O
R

A

cav1 h=1
cav2 h=1

cav12 h=1

vector sum function for h=1..8

vector sum  
(h=1..8)

to Aurora 

SUM

normalize
(num of
cavity) 

Aurora data format:

High speed serial
communication module:
• Virtex-5 used
• Gathers and delivers

signals from/to cavity
driver modules and
common function module

• Vector sum function
implemented

Xilinx Aurora used:
• 1 data frame contains 40

data blocks of 16-bits
• Enough for sending 2x

cavities’ I/Q signals of
8x harmonics

• Sent every control clock
(1 MHz)
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Vector sum function test with various setting
Cavity driver I/Q signal:
(I,Q) = (20000, 0) • DUT: 4 m cable

• Cav1 (I,Q) = (20000, 0), cav2 (I,Q) = (0, 0)
• Cavity driver

→ communication module (vector sum)
→ common module

Vector sum received by common module:
(1) no rotation, normalized by 1

→ Received I/Q signal identical to cavity driver

(2) no rotation, normalized by 2

→ Received amplitude is half

(3) 90 deg rotation, normalized by 1

→ (0, 20000) received

(4) −45 deg rotation, normalized by 1

→ close to (14142, −14142), 20000 × 1/
√
2

This simple test proves that the vector sum function works as
expected.
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