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J-PARC rapid cycling synchrotron (RCS)

RCS is a very high intensity proton driver, which delivers beams to Material and
Life Science Experimental Facility (MLF) and main ring synchrotron (MR).

parameter
circumference 348333 m
\ energy 0.400-3 GeV
Kickers beam intensity 8.3 x 1013 ppp
Extraction sect&eq\n\, \ beam power 1MW
\ repetition rate 25 Hz
condary collimators accelerating freq 1.22-1.67 MHz
Transverse primary collimator harmonic number
st stnppmg‘fc‘\\ max rf voltage 440 kV
Injection section % No. of cavities 12
Longitudinal Qof rf cavity 2
primary collimator

MA cavity and tube amplifier:

From
Linac

high rf voltage, 440 kV by 12 cavities

driven by high power tetrode tube amp
- Wideband, Q = 2
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Wideband (Q = 2) MA cavity

e No tuning bias loop necessary to
follow accelerating frequency sweep
(h=2)

- Ferrite cavity requires it

Frequency response of Q = 2 cavity:

- A single cavity driven by
superposition of accelerating and
second harmonic rf (h = 2,4)

WZ00ns A B 7 3aEmY,

W
Chy TOOmVD ooV e
e 17.0160ms
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Wideband (Q = 2) MA cavity

e No tuning bias loop necessary to
follow accelerating frequency sweep
(h=2)

- Ferrite cavity requires it

Fundamental accelerating rf only:

- A single cavity driven by
superposition of accelerating and
second harmonic rf (h = 2,4)

With second harmonic:
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Wideband (Q = 2) MA cavity

e No tuning bias loop necessary to
follow accelerating frequency sweep
(h=2)

- Ferrite cavity requires it

Measured wake voltage waveform: [ ]
- A single cavity driven by
superposition of accelerating and
second harmonic rf (h = 2,4)
°
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Wideband (Q = 2) MA cavity

e No tuning bias loop necessary to
follow accelerating frequency sweep

(h=2)

- Ferrite cavity requires it

Measured wake voltage waveform: [ ]
- A single cavity driven by
superposition of accelerating and
second harmonic rf (h = 2,4)
°

LLRF is responsible for driving MA
cavity with these requirements.
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2. LLRF functions for RCS
- Existing LLRF control system and functions
- Why new system?
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e Developed JFY

D | i A 4|6 -

2003-2006, in operation since 2007

e Consists of specialized 9U height VME modules

- P1: VME

- P2, P3: specialized parallel bus for signal distribution
- Virtex II pro and Spartan-IT used

e System clock: 36 MHz

RT2018, Williamsburg, Fumihiko Tamura
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LLRF functions for RCS

MAIN BLOCK

SPG module

Radial loop
controller,
orbit pattern|

Dipole

Current
Feedforward|
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Phase loop
controller,
hase pattern

FEEDFORWARD BLOCK

To each
Cavity module

Cordinate
transformer

To eact
FFC module
via backplane

Vector Sum
&

Phase Detect
Harmonic

component
separation

Cavity Power
Voltage Amp
Monitor

(1..12) Cavity
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LLRF functions for RCS

MAIN BLOCK FEEDFORWARD BLOCK

To each
Cavity module

SPG module

n
h=t
phase signal
-
Radial loop Phase loop _
controller controller, T
orbit pattern| hase pattern h=2
X2 ——> phase signal
-
x

BPM .
Detect
& se Dete h=4
x4 —— phase signal
1 31 -
n
h=6
X6 —— phase signal
(=x2+x4)

(1..12) Cavity

For frequency sweep:

e Revolution frequency pattern
e Phase accumulator generates revolutional phase signal from -m to .
Multiplying h, higher harmonic phase signal generated

e h = 2,4 phase signals distributed to modules
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LLRF functions for RCS

MAIN BLOCK FEEDFORWARD BLOCK

SPG module

Phase loop .

controller,
hase pattern

ca o 7
Voltage Amp

Monitor

(1..12) Cavity

Dual harmonic cavity voltage control:

o for each of 12 cavities
e (Scalar) amplitudes of h = 2,4 controlled by feedback loops

F. Tamura et al., Phys. Rev. ST Accel. Beams, vol. 11, 072001, 2008
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LLRF functions for RCS

MAIN BLOCK

SPG module

To each
Cavity module

FEEDFORWARD BLOCK

Ya backplane

Phase loop |
controller,
hase pattern
Vector Sum
&

Phase Detect

Cavity
Voltage
Monitor

Amp

(1..12) Cavity

Beam feedback loops:

e Radial loop for correction of frequency using BPM signal
- Implemented but not used

e Phase loop for damp the longitudinal oscillations
- Compares phases of beam and cavity vector sum

RT2018, Williamsburg, Fumihiko Tamura

adjustment

FFC module
via backplane

n=246FF BCA

W
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LLRF functions for RCS

MAIN BLOCK FEEDFORWARD BLOCK
To each
Cavity module

SPG module

cavity #1 rotation,

gap
voltage gain : number of |
Phase loop : cavities
controller, H
hase pattern

cavity #2
Vector Sum
&

gap
voltage

Phase Detect

gain phase

cavity #12
voltage 9

Vector sum function:

e Detected I/Q cavity voltage of the harmonic is rotated and sent to the vector
sum module
- Rotation angle corresponds to the cavity position in RCS ring
e Summation signal is normalized by number of cavities
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vector sum
Q
to phase FB




LLRF functions for RCS

MAIN BLOCK FEEDFORWARD BLOCK
To each
i -
SPG module S

Cordinate
transformer

Radial loop Phase loop Beam Pick Up

controller controller, act
orbit pattern| hase pattern (WCM) FFC module
via backplane

BPM
Detect
1 31

(1..12) Cavity

Multiharmonic feedforward for beam loading compensation:

e Pick up beam current signal by WCM

e FF compensation signal generated so that —ip.qn is fed to the cavity in addition
to driving current, to cancel wake voltage. h = 1..6 are compensated

F. Tamura et al., Phys. Rev. ST Accel. Beams, vol. 14, 051004, 2011
F. Tamura et al., Phys. Rev. ST Accel. Beams, vol. 18, 091004, 2015
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LLRF functions for RCS

MAIN BLOCK FEEDFORWARD BLOCK
To each
Govty modle

SPG module

Frequency Phase
pattern acoumulator|

Cordinate
transformer

Radial loop Phase loop c 12
controller, controller,
orbit pattern| hase pattern FFC module

via backplane
Vector Sum
&

Phase Detect

Cavity
Voltage
Monitor

(1..12) Cavity

Miscellaneous functions (not shown in diagram):

e Kicker trigger, linac chopper gate pulse generation
e Revolution clock for measurement
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LLRF functions for RCS

MAIN BLOCK

SPG module

Radial loop
controller,
orbit pattern|

Dipole

Current
Feedforward|
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FEEDFORWARD BLOCK

To each
Cavity module

Cordinate
transformer

Phase loop
controller, To eact
hase pattern ST FFC module
via backplane

Vector Sum
&

Phase Detect
Harmonic

component
separation

Cavity Power
Voltage Amp
Monitor

(1..12) Cavity
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Why new system?

Although the existing system working well. ..

e Old FPGAs (Xilinx Virtex-IT pro and others) used in the
modules are already discontinued and not supported by the
current development environment

e We have spare modules, but it will be difficult to maintain the
system in near future

Therefore, we decided to develop new system.

Considerations:
e All functions except radial loop to be implemented

e Generic FPGA module + I/0 module for specific function
preferred

- Existing modules are different for functions
- Easier management of spares expected
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System overview

AC100V
——— PM(RTM)

CPU
__WCMin__,
_26Hztrg |
_beamtrig . ;5mmon function
_meastig | module RTM
_mode (1.0) |

cavlin

RF
backplane

RF
V2 in backplane
ca cavity driver

module #1 RTM

144MHz clk

cavitin
cavit out

cavi2in cavity driver
cavi2 out module #6 RTM

RF
backplane

12MHz clk

clock generator RF
eRTM backplane

RT2018, Williamsburg, Fumihiko Tamura

System clk:
o 144 MHz
(existing: 36 MHz)
e generated by clock gen

common function eRTM, distributed via
=TS ANE DESY-type rf backplane

CNT/PATN clk, f1

cavity driver
module #1 AMC

cavity driver
module #6 AMC

high speed serial
communication
module
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System overview

AC100V AC100V System clk:
— [ e |
GbE o 144 MHz
(existing: 36 MHz)

WCM in
25Hz trig RF e generated by clock gen

backplane

—beam1ig - oommon function common function eRTM, distributed via

T
% module RTM module AMC DES\/'TYPZ rf backplane

cavlin
RF
backplane .
cavity driver cavity driver e Common function
module #1 RTM module #1 AMC module: frequency

pattern, phase FB, ...

CNT/PATN clk, f1

port 17-20
trigs, A/B,
mode(1..0)

cav2in

144MHz clk

) : : e Cavity driver: rf gen for
cavitin g
it out | RF cavities, feedforward
- backplane ¢ .
cavi2in cavity driver cavity driver driver
cavi2 out module #6 RTM module #6 AMC

12MHz clk

clock generator RF DiohiSpeecelial [ ngh speed serial
eRTM backplane communication

module communication module,
detail described later
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Multipurpose AMC by Mitsubishi Electric TOKKI systems

ADC(7..0)

| DAC(1_0) =
=

DIO P/N(5..0)

JESD204B+8

8bit Switch

LED GRN, RED

- EPICS IOC with Linux embedded, setting / monitoring by CA
- I/Q Waveform monitor is useful for commissioning

e 1GB SDRAM used as pattern memory

e 8x ADC, 2xDAC
- An AMC can handle two cavities
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Common function module

Common function module

25Hz trig —> 144MHz clk

beam trig —> (from rf backplane)

CTRL clk frequency
meas trig —> PATN clk gen pattern memory

—> f1

port 17-20
triggers
(25Hz, beam, meas)
CTRL, PATN clk
A/B
kicker trigger gen 1 (32bit rev freq)
WCM chopper pulse gen

° port 1
bleam (not implemented yet) vector sum cav I/Q
signal

mode (1..0) —>

t1
phase feedback port
feedforward beam analysis V¥]CM I’/:% ignal
(not implemented yet) phase B signal

e Receives friggers/modes. Generates CTRL/PATN clocks. Distributed to
modules via backplane

- More flexibility for multiharmonic rf generation in cavity drivers
Below are not implemented yet:
o Phase feedback, WCM beam signal analysis for rf feedforward
e Miscellaneous functions (kicker trigger / chopper pulse generation)
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Cavity driver module

Cavity driver module

144MHz clk

- -«
. 1 " - S (from rf backplane)
cavity #n multiharmonic vector rf phase FB
gap voltatage voltage control

port 17-20

triggers

(25Hz, beam, meas)
CTRL, PATN clk
AB

1 (32bit rev freq)

cavity #n
out

port 1
cav #n, #n+1 1/Q

. = n N port 1
cavity #n+1 multiharmonic vector rf phase FB || <— WCM I/Q
gap voltatage voltage control phase FB signal
cavity #n+1
out

[ ]
e Phase accumulator generates phase signal

e Multiharmonic vector rf voltage control and feedforward (not implemented yet)
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Current status

The system was built in JFY 2017.

high speed serial

- ek 7 3'-.’?-“'4“
| g_q common function module
: connector panel
el V. hd
‘LAY

We have at present:

e Infrastructures (shelf,
PM, CPU, MCH)

e 1x common function
module

e 1x cavity driver module

e 1x high speed serial
communication module

Development of next generation LLRF contral system for J-PARC rapid cycling synchrotron
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Key features (1): multiharmonic vector rf voltage control

feedback blocks for h=1...8

phase signal (h=1) frequency (h=1)

_)

e Number of harmonics increased, thanks to capacity of Zynq
e Phase control possible

e can compensate beam loading
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Key features (1): multiharmonic vector rf voltage control

cavit multiharmonic
ity rf signal
voltage

from ADC feedback blocks for h=1...8

setpoint (Q)
1/Q voltage

pattern setpoint (1)

controller

controller

phase offset .
phase offset CORDIC gain LUT

harmonic ® f

number(hn) frequency (h=hn) @

phase signal (h=hn)

I
phase signal (h=1) frequency (h=1)

Input: cavity voltage, output: multiharmonic rf signal.
Eight FB blocks (h = 1..8).
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Key features (1): multiharmonic vector rf voltage control

cavity
voltage

multiharmonic
rf signal

from ADC feedback blocks for h=1...8

setpoint (Q)
1/Q voltage

pattern setpoint (1)

gain pattern

LPF || < C“ PI
(CIC) controller

LPF |Q - +j+ PI
(CIC) controller
cos| sin cos
B oot

LUT phase offset
harmonic ® f

number(hn) frequency (h=hn) @

phase signal (h=hn)

—
CORDIC b CORDIC gain LUT

phase signal (h=1) frequency (h=1)

Well-known I/Q feedback structure:
I/Q demodulator, setpoint, PI control, and I/Q modulator.
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Key features (1): multiharmonic vector rf voltage control

multiharmonic

cavity rf signal

voltage
from ADC feedback blocks for h=1...8

setpoint (Q)
1/Q voltage

pattern setpoint (1)

PI
controller

PI
controller

COs|

phase offset .
CORDIC J LuT phase offset CORDIC gain LUT

harmonic ® f

number(hn) frequency (h=hn) @

phase signal (h=hn)

I
phase signal (h=7) frequency (h=1)
-_— >

Phase signal and frequency of the selected harmonic obtained by multiplying
revolution phase signal and f1 with harmonic number hn. Used for I/Q demod/mod
and addressing of LUT. LUTs are necessary for frequency sweep.
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Key features (1): multiharmonic vector rf voltage control

multiharmonic

cavity rf signal

voltage
from ADC feedback blocks for h=1...8

setpoint (Q)
1/Q voltage

pattern setpoint (1)

PI
controller

PI L
controller

TOS TSt

phase offset .
CORDIC phase offset CORDIC gain LUT

. A
harmonic ® .

number(hn) frequency (h=hn) @

phase signal (h=hn)

I
phase signal (h=1) frequency (h=1)

Phase offset LUT gives phase offset between I/Q demodulator and modulator, to
control phase transfer function as well as to compensate frequency response of
1-turn transfer function.
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Key features (1): multiharmonic vector rf voltage control

cavity
voltage
from ADC

multiharmonic
rf signal

feedback blocks for h=1...8

COs|

harmonic

phase offset
CORDIC phase pr— CORDIC gain LUT

setpoint (Q)
1/Q voltage

pattern setpoint (1)

gain paﬁern

controller

controller

gain

number(hn)

1
® frequency (h=hn) (?

phase signal (h=hn)

I
phase signal (h=1)

frequency (h=1)

Gain LUT compensates cavity frequency response.

RT2018, Williamsburg, Fumihiko Tamura
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Key features (1): multiharmonic vector rf voltage control

multiharmonic

cavity rf signal

voltage
from ADC feedback blocks for h=1...8

setpoint (Q)
1/Q voltage

pattern setpoint (1)

controller

controller

phase offset .
phase offset CORDIC gain LUT

harmonic ® f

number(hn) frequency (h=hn) @

phase signal (h=hn)

I
phase signal (h=1) frequency (h=1)

Finally, multiharmonic rf signal obtained by summing up the signals from blocks.
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Multiharmonic rf generation

Fourier series of a sawtooth
wave up to m-th harmonic:

(O

HOE %Z

h=1

>

e w;: revolution angular freq
e Unity amplitude
e h: harmonic number

RT2018, Williamsburg, Fumihiko Tamura

Test setup:

cavt out
" DUT
cavity
driver amplifier chain
. + cavit
module oscilloscope

or
4m cable

caviin

e DUT: amplifier chain + cavity

Development of next generation LLRF contral system for J-PARC rapid cycling synchrotron 18



Multiharmonic rf generation

Fourier series of a sawtooth
wave up to m-th harmonic:
Test setup:

2 m (_1)h+1 ) == DUT
f=3 sin hw;t o
s h—] h module oscilloscope :c::/:y
e w;: revolution angular freq ® DUT: amplifier chain + cavity

e Unity amplitude
e h: harmonic number

Form = 8,

2 1 1 1
f(t)= - <sin wit - = sin2w;t + = sin 3wt -+ - = sin 8w11‘)
T 2 3 8
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Multiharmonic rf generation

Measured I/Q amplitude:

[ (U1:21T'1MHZ

e (I;,Q1) = (0,3000) for h = 1, higher harmonics according to the
equation

e Measured amplitudes close to the set points
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Multiharmonic rf generation

Waveform comparison, calc/meas:

— calculation
— isurement

Measured I/Q amplitude:

g
s
S
a
g
E)

° time [us)

o Wp = 2m-1 MHz

e (I;,Q1) = (0,3000) for h = 1, higher harmonics according to the
equation

e Measured amplitudes close o the set points
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Multiharmonic rf generation

Waveform comparison, calc/meas:

— calculation
— isurement

Fourier series of a
(h=2n-1):

Als Ald

S

n=
(sm wit+ = sm 3wyt

f(t) sm(2n Dwt

1
+— sinbw;t + = sin 7w11‘>
5 7
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Multiharmonic rf generation

Waveform comparison, calc/meas:

Fourier series of a

(h=2n-1):
HOE 4 Zm: ! sin(2n - Dw;t
RE=a '

4 /. 1 .
= — (smwl'n — sin 3wyt
™ 3

1 1
+—sinbwt + = sin 7w1‘r>
5 7

Multiharmonic vector rf control works nicely:
[ J

- Bunch shaping using third/fourth (h = 6, 8) harmonics in addition
to second (h = 4) harmonic is possible
- Beam loading compensation done by voltage control (existing: FF

only)
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Key features (2): high speed serial communication

Vector sum:

ggin phase
Vector sum module
rotated

o 1/Q demod g R
voltage gain ; number of

cavities |

gain phase

vlage § i, vectrsum e Vector sum:
: ‘ P Cavity IQs (drivers)
— vector sum — phase FB

o physe e Phase FB sighal (common)
i ‘ — volt control (driver modules)

o Not very sophisticated

How can we realize star topology
with MicroTCA.4?

RT2018, Williamsburg, Fumihiko Tamura Development of next generation LLRF contral system for J-PARC rapid cycling synchrotron
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Key features (2): high speed serial communication

Port #9#10  H#11 #12

s
==

PCle
or
SRIO

Point-2-paint
links

TCLKC
TCLKD

Extended Options

Triggers,
Clocks,
Interlocks

Foeciest K3

e There are no trivial star-like connections among AMCs
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Key features (2): high speed serial communication

Port Sot: 41 #2 #3  #4  #5 #6  H#7T H8  #9 #10 #1M  #12
[ ]
—_—
==
3]

[ | ]

PCle ([ 5 | ]

fo (B ]

71 ]

8] ]
|

(S| [S5—=

L

|

Extended Options

Interiocks

[ Clocks |

Foeciest K3

e There are no trivial star-like connections among AMCs
e Idea: putting FPGA logic in MCH2 slot and using Portl, although it sacrifices redundancy of MCH
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Key features (2): high speed serial communication

cavity driver #1

© v
** **
] 1]
2z =
S °
2 =
= s
K] T
S )

Aurora
CAV1
10[15..0]

Aurora
USERCLK
(62. 5MHz)

RT2018, Williamsburg, Fumihiko Tamura

Signal flow using Port1:

common function module

WCM 1Q, phaseFB
cav11,121Q (h=1..8)
WCM Q, phaseFB

cav9,101Q (h=1...8)

WCM 1Q, phaseFB

cav1,21Q (h=1..8)

vector sum (h=1...8)

WCM 1Q, phaseFB
(h=1..8)

high speed serial
communication module
in MCH2 slot

vector sum function for h:

vector sum
(h=1.8)
to Aurora

RESERVED_1

-

RESERVED_8

normalize
(num of
cavity)

Virtex-5 used

Gathers and delivers
signals from/to cavity
driver modules and
common function module

Vector sum function
implemented

1 data frame contains 40
data blocks of 16-bits
Enough for sending 2x
cavities' I/Q signals of
8x harmonics

Sent every control clock
(1 MHz)

Development of next generation LLRF control system for J-PARC rapid cycling synchrotron



Vector sum function test with various setting

(I.Q) = (20000, 0) e DUT: 4 m cable
o ey e Cavl (I,Q) = (20000, 0), cav2 (I, Q) = (0,0)

cavity driver h=10Q

e Cavity driver
— communication module (vector sum)
— common module

amplitude [arb. unit]

—— vector sum h=11
vector sum h=10Q

— Received I/Q signal identical to cavity driver

RT2018, Williamsburg, Fumihiko Tamura Development of next generation LLRF control system for J-PARC rapid cycling synchrotron 24



Vector sum function test with various setting

(I.Q) = (20000, 0) e DUT: 4 m cable
: e r— e Cavl (I,Q) = (20000, 0), cav2 (I,Q) = (0,0)

cavity driver h=10Q

e Cavity driver
— communication module (vector sum)
— common module

—— vector sum
vector sum

— Received I/Q signal identical to cavity driver

(2) no rotation, normalized by 2

—— vector sum h=11
vector sum h=1Q

20
time [ms]

— Received amplitude is half

RT2018, Williamsburg, Fumihiko Tamura Development of next generation LLRF control system for J-PARC rapid cycling synchrotron 24



Vector sum function test with various setting

(I.Q) = (20000, 0) e DUT: 4 m cable
% 200 ey e Cavl (I,Q) = (20000, 0), cav2 (I,Q) = (0,0)

cavity driver h=1Q

e Cavity driver
— communication module (vector sum)
— common module

(3) 90 deg rotation, normalized by 1

—— vector sum h=11
vector sum h=10Q

— Received I/Q signal identical to cavity driver — (0,20000) received

(2) no rotation, normalized by 2

—— vector sum h=11
vector sum h=1Q

amplitude [arb. unit]

— Received amplitude is half

RT2018, Williamsburg, Fumihiko Tamura Development of next generation LLRF control system for J-PARC rapid cycling synchrotron
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Vector sum function test with various setting

(I,Q) = (20000, 0)

5 —— cavity driver h=11
s cavity driver h=1Q

—— vector sum
vector sum

— Received I/Q signal identical to cavity driver

(2) no rotation, normalized by 2

—— vector sum h=11
vector sum h=1Q

— Received amplitude is half

e DUT: 4 m cable
e Cavl (I,Q) = (20000, 0), cav2 (I,Q) = (0,0)

e Cavity driver
— communication module (vector sum)
— common module

(3) 90 deg rotation, normalized by 1

—— vector sum h=11
vector sum h=1Q

— (0,20000) received

(4) -45 deg rotation, normalized by 1

— close to (14142,-14142), 20000 x 1/+/2
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Vector sum function test with

(.

—— cavity driver h=11
cavity driver h=10Q

—— vector sum h=11
vector sum h=10Q

— Received I/Q signal identical to cavity driver

(2) no rotation, normalized by 2

—— vector sum h=11
vector sum h=1Q

— Received amplitude is half

various setting

e DUT: 4 m cable
e Cavl (I,Q) = (20000, 0), cav2 (I,Q) = (0,0)

e Cavity driver
— communication module (vector sum)
— common module

(3) 90 deg rotation, normalized by 1

—— vector sum h=11
vector sum h=1Q

— (0,20000) received

(4) -45 deg rotation, normalized by 1

— close to (14142,-14142), 20000 x 1/+/2

This simple test proves that the vector sum function works as

expected.
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RCS OUTPUT BEAM POWER FOR MLF [KW]

1200

1000

800

600

400

200

O

SUMMARY AND OUTLOOK /
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- NEW SYSTEM SEEMS PROMISING

- bx CAVITY DRIVER WILL BE BUILT,
REMAINING FUNCTIONS TO BE IMPLEMENTED

- HOPEFULLY NEW SYSTEM WILL SERVE IMW OPEBATION,
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