Pulsar3a: Next Generation ATCA Full Mesh General Purpose FPGA Based Processing Board

J. Olsen1, T. Liu1, Z. Xu2, Z. Hu1, C. Edwards3

1 Fermi National Accelerator Laboratory, Batavia, Illinois, U.S.A
2 Peking University, Beijing, CHINA
3 Northern Illinois University, Dekalb, Illinois, USA
Outline

- Motivation and general R&D goals
- ATCA background
- Pulsar2a and Pulsar2b
- New Pulsar3a
 - Motivation and challenges
 - Hardware subsystem changes
 - Preliminary results
- Conclusion and next steps
The Pulsar is a custom ATCA full mesh enabled FPGA-based processor board which has been designed with the goal of creating a scalable architecture abundant in flexible, non-blocking, high bandwidth interconnections. Initially motivated by silicon-based tracking trigger R&D needs for LHC experiments, the Pulsar is uniquely positioned as a flexible general-purpose platform ideally suited to situations where multiple processing engines need to be tightly coupled.

- ATCA platform, full mesh backplane
- Scalable, flexible, interconnected
- High bandwidth interconnects
- FPGA based, general purpose
- Multiple processors, tightly coupled
- Blur the distinction between FPGAs
ATCA Background

- Advanced **Telecommunications Computing Architecture**
 - High availability
 - Redundant 48V power
 - Redundant control
 - Hot swap everything
- Unique full mesh backplane
 - 4 lanes between all slots
 - 10G – 40G – 100G
- Large 8U x 280mm form factor
- High power 300W+ per slot
- IPMI management of intelligent field replaceable units
Pulsar2a (2012-2013)
Pulsar2a Results

- R&D goals met:
 - First experience with 7 series FPGAs and Vivado toolchain
 - Backplane and RTM GTX links working at 6Gbps
 - LVDS working at 400MHz / 800Mbps DDR
 - Switching regulators working OK
 - Basic IPMC software working with shelf manager
 - No mechanical issues
Pulsar2b (2014)
Pulsar2b Results

- Gained experience with a large Virtex-7 FPGA (690T)
- Successfully tested GTH transceivers to 10Gbps
 - RTM optics
 - Full Mesh Backplane (many different vendors!)
 - FMC Mezzanines
- New IPMC module
 - Continue developing IPMI software
 - Network interface (telnet, ftp, etc.)
 - Xilinx Virtual Cable protocol
Pulsar2a/2b Expansion: Mezzanine Cards

- Single and Double wide FMC mezzanine cards
- Test high speed interfaces (LVDS, MGT) to Pulsar boards
- Expand processing power (2 x KU060 FPGAs)
- Standalone test platform for Pattern Recognition Associative Memory Devices
 - ASIC
 - FPGA
- Track finder board in the demonstration system
 - Zhen’s talk on Monday
Pulsar3a (2017-2018)

CMS L1 tracking trigger R&D
Pulsar3a: Improvements over Pulsar2b

- Fiber I/O bandwidth
 - 40 → 96 links
 - 10G → 16G/25G
- Full mesh backplane bandwidth
 - 10G → 16G
- Increased overall bandwidth
 - 1Tbps → 2Tbps
- LVDS local bus
- Logic resources
 - 690k LC → up to 5M LC
- Board simplification
 - Passive RTM
 - Mezzanines removed
Pulsar3a: Rear Transition Module

- Pulsar2a and Pulsar2b: optics on RTM
 - SFP+ and QSFP+ modules up to 10Gbps per lane
 - MMC microcontroller required
 - Hot swap, e-keying, other misc. IPMI stuff
 - Added complexity to IPMC software
 - Long high speed traces + Zone-3 connectors
- Pulsar3a: optics move inboard
 - Passive optical RTM uses Molex blind mate MTP connectors
 - Much shorter traces on Pulsar3a
Pulsar3a: Optics

- SAMTEC Firefly x12 optical modules
- Up to 14Gbps per lane
- Preliminary results show RX margin looks good at 12.5Gbps PRBS7 with default settings
- BER $<10^{-14}$
- Ready for 28Gbps Firefly modules
 - 36 GTY transceivers up to 25Gbps
- Optical full mesh with external passive mixer box / patch panel
Pulsar3a: Backplane Fabric Interface

- Slave FPGA drives most full mesh channels
 - GTH transceivers up to 16Gbps in KU115 -2 speed grade
- Preliminary results look promising at 15.625Gbps
 - Loopback with Mini-backplane
 - Tests Pulsar3a PCB traces and backplane connectors
- Start backplane testing as soon as board #2 is ready
Pulsar3a: Power Distribution

Many high current power rails converge under the BGA. Split planes and lots of vias present challenges routing power to the FPGAs:

High efficiency non-isolated point of load switching regulators (40A and 20A)
Pulsar3a: Telemetry

• Sensors all over the board
 – PMBus regulators report temperature, voltage, current
 – FPGA core temperature
• Firefly modules
 – Pages of status and control bits
• Programmable low jitter clock synthesis chips for MGT reference clocks
• All of these peripherals are I2C and connect to IPMC
• Continuously scanned by IPMC
• IPMI Sensor Data Records to Shelf Manager
Pulsar3a: Thermal

- Master FPGA: 60W
- Slave FPGA: 30W
- Airflow and heatsink modeling in Solidworks
- Improve airflow with 3D printed air baffles
- Several different heat sink designs ready for testing
Conclusion

- Pulsar3a was initially motivated by CMS L1 tracking trigger R&D and builds upon the experience gained from Pulsar2b and Pulsar2a
- Continue to pursue our design goals
 - General purpose FPGA platform
 - Scalable, flexible, interconnected
 - High bandwidth interconnects
- Presented a first look at the new Pulsar3a hardware testing
- Next steps:
 - More boards, more testing!
 - Future board revision: precision clock distribution