Design and Evaluation of LAr Trigger Digitizer Board in the ATLAS Phase-I Upgrade

Kai Chen On behalf of the LTDB design team Brookhaven National Laboratory

a passion for discovery

21st IEEE Real Time Conference June 15, 2018

Office of Science

ATLAS LAr calorimeter

- ~180k channels for the full readout of the electromagnetic barrel and endcap (EMB and EMEC), hadronic (HEC) and Forward (FCAL) calorimeters.
- 1524 Front End Boards (FEB)
- 3584 channels for analog trigger readout

Current LAr electronics

- 128 channel per FEB, 8 FEBs per ROD
- 32 trigger towers of ($\Delta_{\eta} \times \Delta_{\phi} = 0.1 \times 0.1$) per Tower Builder Board (TBB)
- Main readout
 - Cell signals are amplified, shaped, sampled at 40 MHz, digitizd and transmitted at 100 kHz upon L1A trigger
 - Will be upgraded in HL-LHC
- Triggr readout
 - Sums signals from Layer Sum Board (LSB) to form trigger towers, and sends them to L1Calo system
 - To be upgraded in Phase-I

Phase-I upgrade

		Elementary Cell	Trigge	er Tower	Su	per Cell
Layer		$\Delta\eta \times \Delta\phi$	$n_\eta \times n_\phi$	$\Delta\eta \times \Delta\phi$	$n_\eta \times n_\phi$	$\Delta\eta \times \Delta\phi$
0	Presampler	0.025×0.1	4 × 1		4 × 1	0.1 × 0.1
1	Front	0.003125 imes 0.1	32 × 1	01 201	8 × 1	0.025×0.1
2	Middle	0.025×0.025	4×4	0.1 × 0.1	1 × 4	0.025×0.1
3	Back	0.05 imes 0.025	2 × 4		2 × 4	0.1 × 0.1

10 times finer granularity

- Keep layers information 0
- Finer layer segmentation: $\Delta_{n} \times \Delta_{\phi} = 0.025 \times 0.1$ 0 for front and middle layers
- Better energy resolution
- Better background rejection

Phase-I upgrade

Kai Chen (BNL)

LTDB in Phase-I upgrade

To Tower Builder Board

- To LDPS:
 - Digitizes up to 320 SC in 40 Msps and sends the information to LDPS via 40 optical links in 5.12 Gbps
- To Tower Builder Board (TBB):
 - Sums front and middle layers SC signals and send them to current TBB
- With FELIX
 - Clock and TTC signals are from ATLAS FELIX (Front End LInk eXchange) system via 5 GBT links
- Control, calibration and monitoring is also via GBT links Kai Chen (BNL)

LTDB Type	Channels	LTDB #	
EMB	290	64	
EMEC Std	312	32	
EMEC Spc 0	240	8	
EMEC Spc 1	160	8	
HEC	192	8	
FCAL 0	192	2	
FCAL 1	192	2	
Total		124	

- **124** LTDBs to be installed to handle
 ~34000 Super Cells; ~25 Tbps
- LTDBs will need to operate beyond the HL-LHC upgrade

Evolution of LTDB: demonstrator

- All COTS components
 - Pre-selection irradiation testing for the analog COTS components (ADC, DC-DC modules...)
- Two versions: analog motherboard or digital motherboard
 - 4/10 FPGA, 40 4.8 Gb/s links to back-end
- LTDB demonstrator boards have been successfully installed on detector in July 2014
- Data taken shows satisfactory performance

ASICs on pre-prototype and prototype board

Evolution of LTDB: pre-prototype & prototype

Prototype

- Pre-prototype: 10 Artix-7 FPGAs + 80 NEVIS ADCs + 2 GBTx
- Prototype: 20 LOCx2 + 80 NEVIS ADCs + 5 GBTx & GBT-SCA
- Analog and digital parts are designed by different institutes. Gerber files are merged together for fabrication.
- 24-layers PCB.
- Power mezzanine is used: easy to be replaced for HL-LHC.

Evolution of LTDB: pre-production

- Compared to the prototype: clocks for LOCx2 are changed from GBTx DCLK to CLKDES, to solve the LOCx2 phase unstable issue.
- Packages & functions of all ASICs are verified.
- All LTDB functions are verified at BNL, CERN LAr EMF.
- Two boards were installed on the detector in UX15 in early 2018.

LTDB pre-production

Kai Chen (BNL)

BNL-711

- To test the 124 LTDB production boards, a full test setup is under developing.
 - PCIe card: (fully tested)
 - Front-end test board: (under testing)
 - Baseplane: (under testing)
 - Custom crate: under designing, for Multiple STM & LTDB-

Front-end STM board

LTDB test stand: BNL-711 PCIe card

BNL711

- Xilinx Kintex Ultrascale FPGA: XCKU115
- PCIe Gen3 16-lane
- Supports 2 DDR4 SODIMM memory up to 32GB
- 48 bi-directional optical links up to 14 GB/s
- Support to interface ATLAS TTC system
- On-board 0-delay jitter cleaner
- 16-layer PCB
- Version 2: DDR4 are removed. It is used in
 - ATLAS Phase-I readout system FELIX
 - TPC and MVTX readout in sPHENIX project
 - ProtoDUNE-SP readout

Kai Chen (BNL)

Current LTDB test stand

- The test system based on BNL-711/712
 - TTC clock and signal distribution (x5)
 - ASICs control & calibration
 - ADC data decoding and buffering (x40)
 - power control, V/C/T monitoring
 - 3 links are reserved for control and readout the front-end analog test board STM
- ZC706 + DAC card (16-bit, 1.25Gsps) for LAr signal generation, to be replaced by STM.
 - signals are sent to LTDB via 3 injection boards.

Software development for the LTDB test

- Software: based on low-level tools from ATLAS FELIX project (*fdaq, pepo, etc*).
 - A python API is developed to control GBTx and GBT-SCA via IC & EC bits in GBT link.
 - Scripts and the GUI application
 - Configure GBTx via GBT link (with IC/EC API), configure all ASICs via GBT-SCA (with IC/EC API): GPIO and I2C ports.
 - Calibration of all 80 ADCs and clock phase for LOCx2 chips.
 - Controls the power, and monitor voltage, current and temperature.
 - DAC output waveform control (amplitude, phase, LAr pulse type).

Different modes of data taking.

	siysis DAC					
Reset GTH QUAD 0 0 reset all 10 quads	LIDB Status					
Old LOCx2 New LOCx2	CDR_Lock	0.34		CDR_LOCK_Remapped_by_ADC		
onfigure MTRx Prower Supply Configure LOCX2 MTx 0 0 0 0 reset all	GTH_RXRst_done DDR_Cel_Done	0x3ff 0x0		oominin		
ADC Data Pattern Baw Data						
G8T Link # 0 0 12C #	CRC Status 0x0 SYNC Status 0x6aaaaaaa 0x6aaaaaaaa					
	onfig	GRP1	GRP2	GRP3	GRP4	GRPS
ADC # 0 Sele	cted ADC	1 Sync=2,CRC=0	Sync=2.CRC=0	Sync=2,CRC=0	Sync=2.CRC=0	Sync=2.CRC=0
Read back check (only SLOW MODE)	2 Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	
Common parameters	3 Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	
0 means all GBT link / locx2 / ADC	4 Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	Sync=2.CRC=0	
		5 Sync=2,ORC=0	Sync=2.CRC=0	Sync=2.0.CRC	Sync=2.CRC=0	Sync=2.CRC=0
		6 Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	Sync=2.CRC=0	Sync=2,CRC=0
GBT Link # 0 👘 12C # 0 👘	ADC Calibration Data Taking	7 Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0	Sync=2,CRC=0
ADC # 0	Calculate Selected ADC					
In careful to see the careful addition						
DB checking is finished TH reset for ADC link is done Top for LOCC2 are reset b is rest au current YNUC STATUS errors in PW au current YNUC STATUS errors in PW au LTDB status THO retrektion is finished						

Kai Chen (BNL

Test at CERN LAr EMF

- Setup at Electronics Maintenance Facility:
 - FELIX distributes clock, BCR to LTDB 0
 - FELIX controls/monitors/calibrates LTDB 0
 - SC data can be readout by: 0
 - FELIX (temporary solution)
 - LDPS (integration is ongoing)
- Tests carried out:
 - All 40 data links are stable 0
 - **Fixed latency** for all LTDB channels 0
 - delay from injected pulse to the digitized ADC signal latched by LOCx2 are same
 - **Mapping** verification of SC, and summed signal to TBB 0
 - Noise and crosstalk test for legacy trigger readout 0

Test results on detector

Pedestal distribution

LTDBs in UX15

FELIX in USA15

16

Summary and outlook

- LTDB is the kernel part in front-end of the ATLAS LAr Phase-I upgrade.
 - High density, radiation tolerant, multiple high-speed links
- Demonstrator board
 - Installed in 2014
 - Successful data taking from 2015 to 2017
- Pre-production board
 - Installed in early 2018
 - Data taking is ongoing
- Full chain integration will take place in this summer:

Thanks!

Brookhaven Science Associates

Job opening at BNL for Trigger & DAQ

https://jobs.bnl.gov/job/upton/postdoctoral-research-associate/3437/8059129

- This job post is for multiple openings.
- The successful candidate is expected to play an essential role in **FELIX** and **Global Trigger** development in the ATLAS upgrades and other *high-energy physics*, *nuclear physics* and *astronomy* experiments.
 - Design, develop, prototype, and produce hardware and firmware for the ATLAS experiment
 - Evaluate hardware and firmware and characterize system performance
 - Participate in system integration of multiple combined systems

Phase noise for GBTx output clocks

- Jitter from 100 Hz to 5 MHz:
 - 4 ps for DCLK
 - 10 ps for CLKDES

Both are good when used as reference clock for LOCx2 and FPGA GTX/GTH.

 Kai Chen (BNL)

107

Diagram of the 1/5 prototype LTDB

The python API for GBTx/GBT-SCA control

