FLIT-level Infiniband network simulations of the DAQ system of the LHCb experiment for Run-3

T. Colombo¹, P. Durante¹, D. Galli², M. Manzali², U. Marconi², N. Neufeld¹, F. Pisani¹², R. Schwemmer¹, S. Valat¹

¹ CERN, Geneva, Switzerland
² INFN & Università di Bologna, Bologna, Italy

Abstract

In this work, we focus on the event building architecture and performance of the LHCb DAQ system for Run-3. The system consists of 10000 Versatile Links terminated into custom FPGAs, 500 Event builder nodes interconnected by a non-blocking 100 Gb/s fabric (e.g. Infiniband or Omnipath), and a 40 MHz event building rate. We present the event building benchmark: DAQPIPE, which implements all the EB traffic described above in a flexible and configurable way.

Event building: architecture

- Readout Unit (RU): collect the fragments from the DAQ board and send them to the BUs
- Builder Unit (BU): receive and aggregate the fragments into full events
- Event Manager (EM): assign events to BUs

This traffic pattern tends to create congestion.

Event building benchmark: DAQPIPE

DAQPIPE is an event building benchmark for the LHCb experiment. It implements all the EB traffic described above in a flexible and configurable way. In this work we will focus in particular on two parameters:

- Credits: number of events processed in parallel by the BU
- Parallel sends: number of fragments on the same event in flight

Event building: fat-tree network topology

- It provides full bisection bandwidth
- The regular topology helps with traffic shaping
- It is widely used and supported by vendors

Infiniband and event building simulation model

- Low level Infiniband model developed by Mellanox in OMNeT++
- Extensive reverse engineering and tuning of the model to match the behavior of real Infiniband EDR (100 Gb/s) systems
- Implementation of accurate event building traffic injectors
- Network topology building for both parametric ideal ones and topologies extracted from existing HPC clusters
- Model validation against real data
- Simulation of systems larger than the HPC clusters we can access today

This plot shows the comparison between a real DAQPIPE run and a simulated one using OMNeT++, for different parameters. In both cases the underlying network topology is an imperfect fat-tree of 64 nodes interconnected by Infiniband EDR (100 Gb/s).

This plot shows the comparison between two runs of the OMNeT++ simulated DAQPIPE with different Infiniband EDR based network topologies: a fat-tree of 72 nodes and imperfect fat-tree of 64 nodes.

This plot shows the comparison between an ideal barrel shifter simulated with OMNeT++ and a real DAQPIPE run, in both cases the topology is an imperfect fat-tree of 64 Infiniband EDR nodes.