
       Fig. 5 shows the Pt reconstruction performance of the first run about the Retina simulations with magnetic field. We 
select fixed Pt of particles and random                            as the input track event. Result in left shows the reconstruction Pt 
(output of Retina) distribution for each input track event with fixed momentum of particles , and the plot in right shows the 
Pt measurement  precision against input_Pt with three different cases.                           

       Real-time track reconstruction in high energy physics experiments at colliders running at high luminosity is very 
challenging for trigger systems. To perform pattern-recognition and track fitting, artificial Retina or Hough transformation 
algorithms have been introduced in the field which have usually to be implemented in the state of the art FPGA devices.
        We study two possible FPGA  implementations of retina algorithm : one using online Floating-Point core and one using 
Look-up Table and fixed-point representation. Detailed measurements of the performance on hardware designs are 
investigated. So far the Retina has mainly be used in a detector configuration made of parallel planes, without or with weak 
magnetic field. Moreover we report on the simulated performance in a detector configuration made of concentric detection 
layers with high magnetic field (4T). 
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Retina Algorithm and Simulation

     

 where σ  is a adjusted parameter for optimal response. The total response of the retina is obtained by calculating the 
excitations R of all cells. Finally tracks are identified by looking for a local maximum in the response array.

     
      

        
         Fig.2 describes the result of a simulation of  above process.  Generated  parameter space (u ,v )  consisting of  100 *100
space  cells  and random hits. A reconstructed track is identified  and  we could target the most possible (ui,vj) and compare
with (x,y)  by using retina algorithm.
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       To validate retina algorithm and measure its performance on FPGA,  firmware prototypes have been designed and 
implemented. Our hardware design consists of 4 modules that mirrors retina processing: (1) Input data module: events and 
cells information load; (2) Distance module: distance si,j

k computation; (3) Exponent function module: weighing by exponent 
function to obtain response for each layer per cell; (4) ACC and comparator module: excitations of cells in the parameter space 
are accumulated and compared (shown in Fig.6).
         In our previous work, our first implementation approach of retina is based on Floating-Point cores in the state of the art 
FPGA devices [3]. Our retina algorithm processor is made up of exponent function module and ACC and comparator module, 
which embed online Floating-Point Operator IP cores and a bus standard for on-chip communication AXI, providing rapidly and 
easily floating-point operators. With this first implementation we investigate latency and FPGA resource occupancy on KC705 
platform (Kintex-7:7K325T-2FFG900). Finally our design based on Floating-Point cores fills at a maximum 70% of the FPGA 
resource up to six cells processing parallely and takes a latency of 197 [3]. FPGA performance keeps improving the number of 
gates and the interconnection speed, therefore the devices could definitely improve the performance making the Floating-
Point Operator core attractive in the future as they are very flexible and can offer higher precision. Never the less, we have to 
optimize our design of Floating-Point cores in a more conventional way and improve ACC and comparator module with fixed-
point calculation to decrease the latency and FPGA resource cost. One step further, as most commercial FPGA designs are 
limited to finite precision signal processing using fixed-point representation, we decided to optimize retina on FPGA more 
efficiently and economically with a fast solution by full fixed-point calculation. We implement input data module and distance 

Conclusion and Outlook
     In this note, we study FPGA-based implementations of the artificial retina algorithm for fast track reconstruction in 
trigger system. So far, we apply retina to a simple detector ignoring magnetic field effects and present on KC705 using both 
Floating-Point IP and fixed-point &LUT approaches. The performance of implementations including latency, resource, 
algorithm precision performance have been compared as well, which can be estimated to a complete prototype of hardware 
system scale. 
       Moreover, our research is targeted to adapt retina algorithm to a more realistic tracker detector with cylindrical 
geometry. Due to the magnetic field effects, charged particle trajectories in this detector are bent and treated as partial arc. 
A first retina modelling of track reconstruction under the situation of particles in a magnetic field with six barrel layers 
tracker has been built. Our purpose is to find out the optimal configuration parameter to balance the size of parameter 
space and measurement resolution of Retina. Then we will mirror this modelling on FPGA to evaluate hardware 
performance and whether Retina is suitable for fast tracking under magnetic field in realistic CMS experiment.  
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        Retina algorithm is inspired  from the processing of visual images by the brain where each neuron is sensitive to a small 
region of the retina. The strength of each neuron is proportional to how close the actual image projected on the retina 
region is to the particular shape that particular neuron is tuned to [1][2].
        In a real HEP detector, the geometry of the detector and the topology of the events are quite complicated. To validate 
retina algorithm, we have used a simple tracker detector model made of 8 parallel tracking planes in the space without or 
with small magnetic field. We assume that every 3D trajectory of a charged particle is a straight line from the primary vertex 
(0,0,0) and identified by a pair of 2 parameters (x,y) in the plane. The (x,y) is the spatial coordinates of the intersection point 
of the track from the last layer (8th) . We discretize the last layer into a number of cells (patterns) 100* 100 , considering it 
as parameter space (u,v). The vertex (0,0,0) and the center of each cell  (ui,vj) could identify an ideal track in the detector 
space uniquely, which means a set of straight lines with an array of the intersection coordinates over all layers are mapped 
in the space. The distance si,j

k
 of the intersections of the coordinates of the track (xi,j

k ,yi,j
k ) from the measured hits (xk,yk) is 

computed (Figure 1). Then we are able to calculate the excitations R of each cell (ui,vj) following the function below :
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RECO Tracks with magnetic field

Fig.1 3D detector model without M.F（magnetic field） 
Fig.2 Comparison between reconstructed (blue 
circle) and generated (red cross) track parameters

Fig.4  Parameter space (0.6/Pt,     )0Fig.3 Track modeling with M.F（magnetic field）

         A more complex use case is the reconstruction of high Pt tracks in a barrel-like multi-layer detector in presence of a 
strong magnetic field. In the magnetic field the charge particle trajectory will bend (figure 3).  The geometry is described as 
six (n=6)  concentric circle layers with equal distance between them. The range of radius of those concentric circle layers is 
from 0.2 (           ) meters (innermost) to 1.15 (              ) meters (outermost). All the particles will start at the center of the 
circles with a given initial angle ,and go across six barrel layers from inner to outer. Due to the magnetic field effect, the 
shape of the track in this detector area is arc. Then using Hough Transformation change the parameter space into (0.6/Pt,     ) 
where Pt is the momentum of each charged particle and      is the initial direction angle of each track (figure 4) . In the end 
we use Retina to find optimal Pt and        for each individual track by scan the whole parameter space(cells) one by one. The 
Parameter range of Pt we set to scan by Retina is from 1GeV to 50GeV and for     is from 0 to 2PI (in radian). Whole 
parameter map is divided into 400*200 cells, while 400 degrees for Pt and 200 degrees for     .   
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In Table.1, we compare the 
performance for two firmware 
designs, under the same test 
conditions, our fixed-point and 
LUT firmware typically reduce 
the latency by a factor 2 and 
resource usage.

Fig.8  Comparison of the spatial resolution (cm) in the (u,v) 
plane between 12-bit fixed-point and 10-bit fixed-point 
representation for the fixed-point & LUT firmware design

To quantify retina resolution , we compare these two approaches results with software simulation. (diffu/diffv means the 
differences between the (u,v) pair of which hits are generated and the reconstruct (u,v) in the parameter plane mapped by 
retina). These outcomes indicate that both approaches can find out the cell candidate. Considering the FPGA resource cost 
and latency, fixed-point & LUT based design offers a better choice.

In Fig.8, we use two resolution of fixed-point 
data computation in fixed-point & LUT design. 
The shown results illustrate that from Q12 to 
Q10 resolution declines, as well as RMS of 
diffu/diifv, which verifies computation of the 
design is right. In the fixed-point & LUT  
design, we keep the resolution Q12 for fixed-
point. 

Table.1  FPGA resource usage and latency for two firmware designs 
Clock (Hz) Firmware Design DSP (%) LUT (%) LUTRAM

(%)
BRAM (%) FF (%) Latency (Cycles) 

/μs

100M Floating-point 17.14 70.72 15.24 3.03 42.32 156/1.56

100M Fixed-point and 
LUT

11.43 7.25 8.46 33.48 9.8 68/0.68

Fig.6  Firmware design 
architecture of retina 
algorithm

Fig.7  Comparison of the spatial resolution (cm) in the (u,v) plane between both hardware 
implementations against the software simulation. Both hardware implementations use a 
12-bit fixed-point representation. The floating-point processing unit use 8-bit exponent and 
23-bit fraction

Fig.5  Graph of retina results resolution : (PT=5GeV,Number of bins 400*200,Pt measurement precision=(1/Pt_Reco by Retina - 1/input_Pt)/(1/input_Pt))

module and use Look-up Table (LUT) 
approach instead of Floating-Point cores 
within exponent function module , in 
which function values are pre-calculated at 
certa in  sample points  and stored in 
memory. At this current stage, we follow 
the same hardware architecture of six cells 
when developing fixed-point & LUT design 
and improve Floating-Point core design for 
further comparison. 
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