
 Fig. 5 shows the Pt reconstruction performance of the first run about the Retina simulations with magnetic field. We
select fixed Pt of particles and random as the input track event. Result in left shows the reconstruction Pt
(output of Retina) distribution for each input track event with fixed momentum of particles , and the plot in right shows the
Pt measurement precision against input_Pt with three different cases.

 Real-time track reconstruction in high energy physics experiments at colliders running at high luminosity is very
challenging for trigger systems. To perform pattern-recognition and track fitting, artificial Retina or Hough transformation
algorithms have been introduced in the field which have usually to be implemented in the state of the art FPGA devices.
 We study two possible FPGA implementations of retina algorithm : one using online Floating-Point core and one using
Look-up Table and fixed-point representation. Detailed measurements of the performance on hardware designs are
investigated. So far the Retina has mainly be used in a detector configuration made of parallel planes, without or with weak
magnetic field. Moreover we report on the simulated performance in a detector configuration made of concentric detection
layers with high magnetic field (4T).

Performance

Retina Algorithm and Simulation

 where σ is a adjusted parameter for optimal response. The total response of the retina is obtained by calculating the
excitations R of all cells. Finally tracks are identified by looking for a local maximum in the response array.

 Fig.2 describes the result of a simulation of above process. Generated parameter space (u ,v) consisting of 100 *100
space cells and random hits. A reconstructed track is identified and we could target the most possible (ui,vj) and compare
with (x,y) by using retina algorithm.

 
k

2

2k
ji,)

2σ
s

(expR (1)

 To validate retina algorithm and measure its performance on FPGA, firmware prototypes have been designed and
implemented. Our hardware design consists of 4 modules that mirrors retina processing: (1) Input data module: events and
cells information load; (2) Distance module: distance si,j

k computation; (3) Exponent function module: weighing by exponent
function to obtain response for each layer per cell; (4) ACC and comparator module: excitations of cells in the parameter space
are accumulated and compared (shown in Fig.6).
 In our previous work, our first implementation approach of retina is based on Floating-Point cores in the state of the art
FPGA devices [3]. Our retina algorithm processor is made up of exponent function module and ACC and comparator module,
which embed online Floating-Point Operator IP cores and a bus standard for on-chip communication AXI, providing rapidly and
easily floating-point operators. With this first implementation we investigate latency and FPGA resource occupancy on KC705
platform (Kintex-7:7K325T-2FFG900). Finally our design based on Floating-Point cores fills at a maximum 70% of the FPGA
resource up to six cells processing parallely and takes a latency of 197 [3]. FPGA performance keeps improving the number of
gates and the interconnection speed, therefore the devices could definitely improve the performance making the Floating-
Point Operator core attractive in the future as they are very flexible and can offer higher precision. Never the less, we have to
optimize our design of Floating-Point cores in a more conventional way and improve ACC and comparator module with fixed-
point calculation to decrease the latency and FPGA resource cost. One step further, as most commercial FPGA designs are
limited to finite precision signal processing using fixed-point representation, we decided to optimize retina on FPGA more
efficiently and economically with a fast solution by full fixed-point calculation. We implement input data module and distance

Conclusion and Outlook
 In this note, we study FPGA-based implementations of the artificial retina algorithm for fast track reconstruction in
trigger system. So far, we apply retina to a simple detector ignoring magnetic field effects and present on KC705 using both
Floating-Point IP and fixed-point &LUT approaches. The performance of implementations including latency, resource,
algorithm precision performance have been compared as well, which can be estimated to a complete prototype of hardware
system scale.
 Moreover, our research is targeted to adapt retina algorithm to a more realistic tracker detector with cylindrical
geometry. Due to the magnetic field effects, charged particle trajectories in this detector are bent and treated as partial arc.
A first retina modelling of track reconstruction under the situation of particles in a magnetic field with six barrel layers
tracker has been built. Our purpose is to find out the optimal configuration parameter to balance the size of parameter
space and measurement resolution of Retina. Then we will mirror this modelling on FPGA to evaluate hardware
performance and whether Retina is suitable for fast tracking under magnetic field in realistic CMS experiment.

Wendi Deng and Zixuan Song
Université libre de Bruxelles(ULB)

 Retina algorithm is inspired from the processing of visual images by the brain where each neuron is sensitive to a small
region of the retina. The strength of each neuron is proportional to how close the actual image projected on the retina
region is to the particular shape that particular neuron is tuned to [1][2].
 In a real HEP detector, the geometry of the detector and the topology of the events are quite complicated. To validate
retina algorithm, we have used a simple tracker detector model made of 8 parallel tracking planes in the space without or
with small magnetic field. We assume that every 3D trajectory of a charged particle is a straight line from the primary vertex
(0,0,0) and identified by a pair of 2 parameters (x,y) in the plane. The (x,y) is the spatial coordinates of the intersection point
of the track from the last layer (8th) . We discretize the last layer into a number of cells (patterns) 100* 100 , considering it
as parameter space (u,v). The vertex (0,0,0) and the center of each cell (ui,vj) could identify an ideal track in the detector
space uniquely, which means a set of straight lines with an array of the intersection coordinates over all layers are mapped
in the space. The distance si,j

k
 of the intersections of the coordinates of the track (xi,j

k ,yi,j
k) from the measured hits (xk,yk) is

computed (Figure 1). Then we are able to calculate the excitations R of each cell (ui,vj) following the function below :

Introduction

References
[1] L.Ristori, “An artificial retina for fast track finding,” Nucl. Instrum. Meth. A 453 (2000) 425.
[2] A.abba et al., “The artificial retina processor for track reconstruction at the LHC crossing rate,” JINST 10, C03018 (2014),
[arXiv: 1409.1565].
[3] Z.Song et al., Study of hardware implementation of fast tracking algorithms, 2017 JINST 12 C02068.

Hardware Design

RECO Tracks with magnetic field

Fig.1 3D detector model without M.F（magnetic field）
Fig.2 Comparison between reconstructed (blue
circle) and generated (red cross) track parameters

Fig.4 Parameter space (0.6/Pt,)0Fig.3 Track modeling with M.F（magnetic field）

 A more complex use case is the reconstruction of high Pt tracks in a barrel-like multi-layer detector in presence of a
strong magnetic field. In the magnetic field the charge particle trajectory will bend (figure 3). The geometry is described as
six (n=6) concentric circle layers with equal distance between them. The range of radius of those concentric circle layers is
from 0.2 () meters (innermost) to 1.15 () meters (outermost). All the particles will start at the center of the
circles with a given initial angle ,and go across six barrel layers from inner to outer. Due to the magnetic field effect, the
shape of the track in this detector area is arc. Then using Hough Transformation change the parameter space into (0.6/Pt,)
where Pt is the momentum of each charged particle and is the initial direction angle of each track (figure 4) . In the end
we use Retina to find optimal Pt and for each individual track by scan the whole parameter space(cells) one by one. The
Parameter range of Pt we set to scan by Retina is from 1GeV to 50GeV and for is from 0 to 2PI (in radian). Whole
parameter map is divided into 400*200 cells, while 400 degrees for Pt and 200 degrees for .

2.01  15.16 

0
0

0
0

0

case1

case2

case3

case1: without any effect
 (Ideal case)
case2: with effect of detector
 measuring precision
case3: with effect of both
 detector's measuring
 precision and Multiple
 Scattering

Condition Setting：
 detector measuring precision
 -> 100um(in RMS)
 Multiple Scattering -> x=0.1Xo
 x: thickness of Detector material
 Xo: radiation length of Det
 material

0)20(0  

In Table.1, we compare the
performance for two firmware
designs, under the same test
conditions, our fixed-point and
LUT firmware typically reduce
the latency by a factor 2 and
resource usage.

Fig.8 Comparison of the spatial resolution (cm) in the (u,v)
plane between 12-bit fixed-point and 10-bit fixed-point
representation for the fixed-point & LUT firmware design

To quantify retina resolution , we compare these two approaches results with software simulation. (diffu/diffv means the
differences between the (u,v) pair of which hits are generated and the reconstruct (u,v) in the parameter plane mapped by
retina). These outcomes indicate that both approaches can find out the cell candidate. Considering the FPGA resource cost
and latency, fixed-point & LUT based design offers a better choice.

In Fig.8, we use two resolution of fixed-point
data computation in fixed-point & LUT design.
The shown results illustrate that from Q12 to
Q10 resolution declines, as well as RMS of
diffu/diifv, which verifies computation of the
design is right. In the fixed-point & LUT
design, we keep the resolution Q12 for fixed-
point.

Table.1 FPGA resource usage and latency for two firmware designs
Clock (Hz) Firmware Design DSP (%) LUT (%) LUTRAM

(%)
BRAM (%) FF (%) Latency (Cycles)

/μs

100M Floating-point 17.14 70.72 15.24 3.03 42.32 156/1.56

100M Fixed-point and
LUT

11.43 7.25 8.46 33.48 9.8 68/0.68

Fig.6 Firmware design
architecture of retina
algorithm

Fig.7 Comparison of the spatial resolution (cm) in the (u,v) plane between both hardware
implementations against the software simulation. Both hardware implementations use a
12-bit fixed-point representation. The floating-point processing unit use 8-bit exponent and
23-bit fraction

Fig.5 Graph of retina results resolution : (PT=5GeV,Number of bins 400*200,Pt measurement precision=(1/Pt_Reco by Retina - 1/input_Pt)/(1/input_Pt))

module and use Look-up Table (LUT)
approach instead of Floating-Point cores
within exponent function module , in
which function values are pre-calculated at
certa in sample points and stored in
memory. At this current stage, we follow
the same hardware architecture of six cells
when developing fixed-point & LUT design
and improve Floating-Point core design for
further comparison.

 1. Zixuan.Song@ulb.ac.be 2. dengdandan@mails.ccnu.edu.cn

