Streaming Readout of the sPHENIX Tracking System

Martin L. Purschke

BROOKHAVEN NATIONAL LABORATORY

Manhattan

Long Island, NY

RHIC from space
T-Shirt Plot: Statistical Reach for some probes

The way PHENIX gets to high PT is through π^0s
That reaches to ~ 20GeV/c
In sPHENIX, we can get to $4x$ that with jets
sPHENIX – the Concept

- Hadronic Calorimeter(s)
- Electromagnetic Calorimeter
- Time Projection Chamber (TPC)
- Minimum Bias Detector (MDB)
- Intermediate Tracker (INTT)
- MicroVertex Detector (MVTX)
We have already presented the calorimeters last time, I’ll focus on the tracking (and the TPC) today.

- Outer HCAL $\approx 3.5\lambda_I$
- Magnet $\approx 1.4X_0$
- Inner HCAL $\approx 1\lambda_I$
- EMCAL $\approx 18X_0\approx 1\lambda_I$

SiPM Readout

$\sigma_E/E < 100\%/\sqrt{E}$ (single particle)
Three Tracker Components

Micro-Vertex Detector (MVTX) Three-layers identical to Inner ALICE ITS (\(r = 2.3\,\text{cm}, 3.1\,\text{cm}, 3.9\,\text{cm} \))

Intermediate Silicon Strip Tracker (INTT) Four layer Si strip detector. (\(r = 6\,\text{cm, 8 cm, 10 cm, 12 cm} \))

Compact Time Projection Chamber (TPC) (20 cm < \(r < 78 \) cm)

All cover at minimum \(|\eta| < 1.1\) and \(2\pi\) in azimuth
Streaming Readout Detectors

I will mostly concentrate on the TPC.

This is a next-gen “gate-less” TPC design
Data and more data

- **MVTX** (MAPS) ~ 20GBit/s
- **Intermediate Silicon Strip Tracker (INTT)** ~ 7GBit/s
- **Compact Time Projection Chamber (TPC)** ~ 100Gbit/s
- **Calorimeters (primarily Emcal, hadronic cal.)** ~ 8GBit/s

This number is still changing and depends on our noise levels (and a successful change in the front-end ASIC). Could be more!

135Gbit/s

Makes for an event size of about 1MByte (or more)
The TPC

DAM = “Data Aggregation Module”

EBDC – “Event Buffer and Data Compression”
The ZigZag Pads

72 modules
2(z), 12(ϕ), 3(r)

12.5mm resolution in r
150 μm in phi
~160,000 ADC channels
The Readout

ALICE SAMPA chip
32 channels 10bit sampling ASIC
Preamp/shaper, ADC
Optional DSP functions

FEE with 8 SAMPAs
256 channels

5GBit/s fiber link

ATLAS FELIX Card ("DAM") – 24 FEE’s

FELIX Card in a standard PC ("EBDC")
DAQ Overview

- DCM-2 receives data from digitizer, zero-suppresses and packages
- SEB collects data from a DCM group (~35)
- EBDC Event Buffer and Data Compressor
- ATP Assembles events and compresses data (~60)
- Buffer Box data interim storage before sending to the computing center (7)
How I explain Streaming Readout to the Public Affairs guys

Think of the recordings of a shopping mall’s security cameras
You keep, say, a month worth of video
Most of the time, absolutely nothing of interest happens
But when there’s something going on, a burglary or so, you go back and cut out the 15 minutes of video in question for the cops
Think of those 15 minutes as the long-term stored data
Translate to sPHENIX…

We record the arrival of charge continuously
But at the end, we are really only interested of the piece of “recording” at the time we triggered an actual event
So stored “events” for the TPC will be a series of short “charge recording segments” covering the times when we triggered the rest of the experiment.
Event Building – or not?

If we stay with the “security camera” paradigm for a moment, that works nicely for events that are far apart – 15mins video at 3pm, another 15 mins at 5:30, and so on.

But if the events become so frequent that many of them are closer together than those 15 mins, the video clips now have a lot of overlap.

Then you might as well keep one continuous “movie”. Segmenting not only offers no longer any savings, but even increases your storage demands due to overlap.

We are preparing for both scenarios.
The streaming data are recorded all the time, and broken up in chunks above threshold. Only chunks correlated with triggered events are then kept, resulting in a greatly reduced data stream.

Would allow to reduce the streaming output to a classic event-building problem — "late-stage triggered mode" — but

Caveat: if the accepted events’ waveforms overlap too much, we incur a partial data replication.

Ok up to ~15%...
We are designing a “hybrid” DAQ back-end that combines trigger and continuous readout. Capable of catering to the “classic” triggered detectors (chiefly the calorimeters). At the same time, we read the streaming detectors.

Can we afford to run the TPC in “late stage triggered” mode?*

Yes

Reduction to a classic event building problem as shown before.

*next Slide
If we cannot do it…

We would then not assemble events fully and log the individual data streams
Shift the event building to a semi-offline process
Assemble some 10% of events for online monitoring

Easier to implement than a full event builder!

But “verification” plays a much larger role

“no event mixing at the DAQ level”

This has been discussed for some time, and we have no doubt it would work
Envisioned Data Rates

Streaming TPC is the 800-pound gorilla in the room – 140 peak, ~100Gbit/s average

Could be more, time will tell

Other systems -> 135Gbit/s total average

Still some front-end design considerations to be worked out – none of them will decrease the rate, on the contrary.

“Average” vs “really long-term average” rates may help

Still, we expect some 50PB of data volume in our first physics run.
RCDAQ - R&D-themed part of the system

- **The RCDAQ DAQ System**
 - Cut out the event builder (not much need right now)
 - Log data at the EVB “input point” instead
 - Same technology, reading out our front-end here will seamlessly integrate into the big thing
 - Powerful scripting/automation features
 - “Real” online monitoring often has its roots in test beam code
 - Add’t’l support for a large variety of non-sPHENIX gear
 - ~20 RCDAQ copies around in the sPHENIX orbit
 - About a dozen more systems in use by external groups
 - Supported on high-end 32core PC to Raspberry Pi

- **sPHENIX Calorimeter electronics**
 - DAM, PC

- **TPC SAMPA Chip and ATLAS Felix Board**
 - DAM, PC

- **RD51 SRS, DRS4, VME gear… some 40 supported devices**
FEE R&D and DAQ integration

- Each new piece of readout electronics gets its readout implemented in RCDAQ
- Completely reusable in the “Big DAQ”
- Use RCDAQ’s amenities for otherwise tedious tasks
- This early setup uses the full FELIX readout chain

Example: Gain linearity measurements
Script it! Humans will make mistakes w/ repetitive tasks
Step through some 60 2mV steps in a pulse generator
Measure SAMPA response together with a DRS4 measurement

```bash
for amplitude in $(seq 10 2 130)
do
  $PULSER_EXEC write $amplitude
  rcdaq_client daq_begin
  wait_for_run_end.sh
done
```
Hot off the press…

This is from Friday Evening
The first full readout chain data from the 8-chip card
Looks good so far, but the main point here is that we can actually read the card 10 days after it was delivered
Summary

Current focus on understanding the total data rate and reduction strategies

Actual GEM data and simulated data in hand to understand the tracking performance

Ability to read all flavors of sPHENIX detector electronics (some are prototypes)

Most electronics has withstood the “strain of a testbeam” (TPC to go there next week)

Solid concept and simulations with streaming readout

Streaming-supporting data formats etc in place

We also have data from the MicroVertex detector, no time to show more today
MVTX, briefly

The MVTX prototype was taken to the FermiLab test beam

ALICE “ALPIDE cards”

MVTX also uses the FELIX card (and RCDAQ)

4-layer “MAPS telescope”
And it worked…

- Successfully operated the full readout chain
 - RU Configured and readout 4 ALPIDEs
 - FELIX successfully integrated into RCDAQ

- Sensor Performance
 - Cluster Size
 - Threshold parameters
 - trigger delay

- High multiplicity events
 - ALPIDE occupancy runs with 10cm lead bricks

- Online Monitoring
 - Hit distribution, relative alignment

- Analysis confirmed telescope performance
 - Hit resolution < 5 um
The last Test Beam

120 GeV/c proton
1-60 GeV secondary

EMCal
Inner Hcal
~ 1.4 X₀ Al
Outer Hcal
Data compression

After all data reduction techniques (zero-suppression, bit-packing, etc) are applied, you typically find that your raw data are still gzip-compressible to a significant amount.

Introduced a compressed raw data format that supports a late-stage compression.

All this is handled completely in the I/O layer, the higher-level routines just receive a buffer as before.
The Event builder has to cope with the uncompressed data flow, e.g. 1200MB/s ... 2500MB/s

The compression is handled in the “Assembly and Trigger Processors” (ATP’s) and can so be distributed over many CPU’s -- that was the breakthrough

The buffer boxes and storage system see the compressed data stream, 700MB/s ... 1300MB/s

Current compression levels: 100G become ~55G
We had looked at magnets, but none of the available ones were quite right, then --

The BaBar magnet secured from SLAC after SuperB canceled, arrived at BNL in February 2015

Considerable additional equipment also acquired (power supplies, dump resistor, quench protection, cryogenic equipment)

Already passed a 100A low power cold test

Well suited to our needs without compromises

1.5 T central field
2.8 m diameter bore
3.8 m long

1.4X₀ coil+cryostat

This really gave a tremendous boost to this project!
Assembly Instructions 😊

sPHENIX Monteringsföljd

1. **Första HCal-modulinstallationen**
 - Lyftande svängtapp
 - Första modulen shimsad undersökt och injusterad
 - Fastsatt med nästa modul
 - Bultad till ändplattorna

2. **Yttre HCal**
 - Fungerar som stödstruktur för detektorn
 - Retur av magnetiskt flöde
 - Bultad till hållaren en sida

3. **Byggnadsställningar**

4. **I-balkstöd**
 - Inre HCal-modul monteringsfixtur
 - Kort I-balk

5. **Kartläggning av magnetflöden innan inre HCal-installationen**

6. **I-balkförlängning**

7. **Linjärskenor**
 - Vagn
 - Detektorinstallation

8. **Monteringsföljd**

11/9/2015

Decommissioning, Installation and Integration