A PXI-based, Multi-channel Ultra-fast Data Acquisition System for Transient Pulsed Signal

Du Yafei1,2, Wu Jun2, Yuan Chen2, Yang Haohan2
(1. Department of Engineering Physics, Tsinghua University, Beijing, 100084; 2. Institute of Nuclear Physics and Chemistry, Mianyang 621900)

1. Overview

This work presents a high speed, high resolution data acquisition system(DAS) with 1Gsps sampling rate and 12 bit resolution, mainly applying to nuclear and particle physics experiments. The system consists of one NI PXIe-1085 chassis, containing a PXIe controller card and 16 data acquisition cards at most. For every single card, the signal conditioning module incorporates one high precision Op Amps converting single-ended signals to differential signals(LVDS) with low additional noise level, and the data acquisition module combines a 12-bit folding interpolating ADC with a Xilinx Kintex-7 FPGA, implementing controls of A/D conversion and high speed data transmission through SFP interface using Aurora protocol. All these cards in the chassis can be synchronized easily using timing and triggering with PXI resources. Besides, a simple software of our system is designed to display the captured waveform signal and communicate with the host PC for remote controlling.

Fig.1: A photo of the PXI-based, Multi-channel Ultra-fast DAS for Transient Pulsed Signal. (Note: The NI PXIe-1085 18-slot chassis features a high-bandwidth, all-hybrid backplane to meet a wide range of high-performance test.)

2. Design and Test

2.1 Hardware Design

- We deploy several orders of input range to cover some hundreds of milli-voltages to hundreds of voltages.
- To improve SNR, a three-order Butterworth filter as anti-alias filter is used.
- A baseline shift module is designed for unipolar signals to fully display in the virtual oscilloscope.
- This design chooses TI’s LMK04821 as the frequency Synthesizer chip.

Fig.2: The block diagram of a single DAQ board.

2.2 Logic and Software Design

- Serial-to-parallel: lower date rate per lane
- We use integrated Block RAM IP core to instantiate a module to assemble the captured data
- The resulting data can be transmitted to remote server through SFP connector with optic fibers using Aurora Protocol.
- After creating the VISA-based driver and developing basic communication and DMA support, our control software is built.

Fig.4: Main Procedures in logic design with Xilinx FPGA.

2.3 Test Results

- Virtually oscilloscopes in a chassis.
- After calibration, primary test results show as followings

<table>
<thead>
<tr>
<th>Anti-alias Filter</th>
<th>23.723MHz</th>
<th>58.541MHz</th>
<th>134.337MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>9.3</td>
<td>9.3</td>
<td>9.2</td>
</tr>
<tr>
<td>No</td>
<td>9.3</td>
<td>9.2</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Tab.1: The primary test results of ENOB.

Fig.6: The typical Gain vs f plot of a single channel

3. Summary

- The DAS can integrate 16 DAQ boards in one chassis. With great scalability, the system can be used for modern big physics experiments.
- Primary measurements show that the each single card in our DAS achieves an analog bandwidth of higher than 200MHz and an ENOB of more than 9 bit at 1Gbps sampling rate.
- Each channel has a memory depth of 65kS and the trigger position can be programmable through software interface.
- The digitized data can be either transferred through PXI 32bit/33MHz bus to the disk of the local controller or through SFP interface to the remote receiver within 1ms.
- Qualitatively speaking, more research work should be done with record and test of single transient pulsed signals.