A Control System of New Magnet Power Converter for J-PARC Main Ring Upgrade

21st IEEE Real Time Conference @ Woodlands Conference Center (9-15.June.2018)

Tetsushi Shimogawa, Yoshinori Kurimoto, Yuichi Morita, Kazuki Miura, Daichi Naito

High Energy Accelerator Research Organization (KEK)

Introduction

J-PARC (Japan Proton Accelerator Research Complex) MR (Main Ring): Proton synchrotron (3-30 GeV)

J-PARC MR upgrade: toward 750 kW operation in FX (present beam power: 500 kW)

→ Increase repetition rate : **0.40** Hz → **0.77** Hz

Shorten ramping-up/down period in output voltage of power converter for magnet

$$V = L \frac{dI}{dt} + RI$$
 $L: load inductance$ $R: load resistance$

Need to replace power converters for magnet

Rated of power converters for main magnets (bending, quadrupole, sextupole)

magnet family	Flat Bottom Current [A]	Flat Top Current [A]	Output Voltage [kV] @ 1.3 sec repetition	#. of power converters	
Bending	190	1570	6.0	6	
Large quadrupole	80	1000	7.0	4	-
Small quadrupole	70	1000	1.5	7	
Sextupole	20	200	0.8	3	

Design of new power converters which consist → Time combination of power unit for various rated

For high output voltage

- → power units are connected in series For high output current
- → power units are connected in parallel

Design of power converter

3 phase AC/DC

(2 series)

3 parallel

For bending magnet:

Controller is required

flexibility for configuration of power converter

Control system

Main works of control system are ...

- Summarizing alarms and failure protection
- Feedback control of power converter with several monitors
- Generating gate pulse for power unit with calculated duty cycles
- Managing sequence of power converter operation
- Monitored status and controlled from host system via ethernet

Features

- *"Fast interlock system" for emergency gate closing to protect power circuit from fatal failure
- ◆ Separate components such as the main control board for feedback control, the gate pulse generator and so on, for expandability
- ◆ Isolating between controller and power circuit with optical connection for avoiding noise contamination

Conclusion

- +A control system of new power converter for main magnet in J-PARC MR is designed and succeeded in controlling with new power converter for small quadrupole magnet
- *Combine test with new power converter for bending magnet is on going
- +We are ready to apply this control system to new power converters

Demonstration of "fast interlock system"

Confirmed that gate pulses are turned off within 10 µsec after detection of alarm signal for "fast interlock system"

Demonstration of output gate pulse from control system

(Frequency of gate pulse : I kHz) Half-bridge AC/DC converter

Full-bridge chopper

Demonstration of combined with power converter

- Succeeded in controlling new power converter for small quadrupole magnet
- No fatal error in two years operation

ON

t (sec)

gate pulse (S1)

gate pulse (S4)

duty cycle