Real time data analysis with the ATLAS

Trigger at the LHC in Run-2
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with Data-Taking at the LHC During Run-2

During Run-1 of the LHC, the ATLAS trigger system operated efficiently at instantaneous luminosities of up to 8 x 1033 cm?2 s and primarily at center-of-mass energies of 7 and 8 TeV. In
Run-2, the center-of-mass energy increased to 13 TeV, enhancing the total proton-proton (pp) cross section, and therefore the trigger rate, by more than 100%. In addition, changes in the
beam parameters resulted in an increase of the instantaneous luminosity by a factor of up to about 3, with a number of pp-interactions per bunch-crossing (in-time pile-up) reaching 80 in
2017. Finally, a reduction of the bunch spacing from 50 ns to 25 ns added interactions from neighboring bunch-spacing (out-of-time pile up). While these changes to the beam aimed at
producing a large enough dataset for probing new physics at the TeV scale and performing measurements at an unprecedented precision, they made the Run-1 trigger menu completely
unsustainable. To preserve the physics program of the experiment, a significant upgrade of the ATLAS trigger system was needed for Run-2.
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Run-2 Improvements to the ATLAS Examples of Real Time Data Analyses
Trigger System : - oL .

ELECTRON TRIGGER:

New Multivariate techniques have been used to calibrate electrons and to implement a
likelihood discriminant improving the efficiency and purity of electron identification.

Required to keep the E; threshold low enough to store as many W, Z and H as possible.

Improvements of the hardware, firmware and software parts of the trigger system must
aim at a better rate control and processing time per event, higher reconstruction and
identification efficiencies with respect to offline selections, and resolution effects closer to !
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software, and remove rate limitation between
fast and precision processing to use the
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The coincidence logic and isolation selections reduce the L1 trigger rate with negligible
efficiency loss. Background is not the most limiting factor; L1 acceptance is.
New L1 instrumentation has a direct impact on efficiency of muon selections.
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leading to very high rate. Thanks to L1 improvements, the E;™ threshold is kept low enough
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Take-home Message

Large statistic data samples constitute one of the key ingredients for exploring new physics and [1] The ATLAS Collaboration, Performance of the ATLAS Trigger System in 2015,

performing high-precision measurements. To do this, the LHC luminosity is continually increased. Eur. Phys. J. C77 (2017) 317.

This constitutes a challenge for data-taking. Thanks to improvements to the ATLAS Trigger and DAQ " N s
system, ATLAS succeeds in selecting the relevant physics events with high efficiency and close-to- [2] The ATLAS Collaboration, Technical Design Report Fast Tracker (FTK), ATLAS-TDR-021.
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offline performances, while coping with the objects rate increases. For other results, see: https://twiki.cern
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