

The Study of Multi-Layer sTGC Test System for ATLAS Phase-I upgrade

Feng Li, Xinxin Wang, Peng Miao, Shuang Zhou, Zhilei Zhang, Tianru Geng,

Shengquan Liu, Liang Han, and Ge Jin*

1.Introduction

ATLAS[1,2] is one of the four experiments at Large Hadron Collider (LHC).LHC will be upgraded in the next several years aiming to new physics study. ATLAS experiment will fulfill Phase-I upgrade by 2020. The current ATLAS muon end-cap system (Small Wheel, SW) [3] will be replaced with a completely New Small Wheel (NSW). The NSW is a set of precision tracking and trigger detectors able to work at high rates with excellent real-time spatial and time resolution. The small-strip Thin Gap Chamber (sTGC) will devote to trigger function in NSW.

STGC contains pad, wire and strip readout. The pads are used through a 3-out-of-4 coincidence to identify muon tracks roughly pointing to the interaction point (IP). They are also used to define which strips need to be readout to obtain a precise measurement in the bending coordinate for the event selection. The signals from strips and pads of sTGC quadruplets will be readout by two different front-end boards (FEB) -- strip FEB (sFEB) and pad FEB (pFEB), respectively. The FEB boards are mounted on the sTGC quadruplets.

This paper presents the study of multi-layer sTGC test system, and it is named Front End Boards Driver Card (FEBDC), which has the capability of handling four sFEBs and four pFEBs simultaneously. The connection and communication between FEBDC and the eight p/sFEBs are the same as a real sTGC Readout system. So the front-end chips on FEBs can be configured by the FEBDC and the raw data for the hit events can be readout and sent back to the FEBDC. The core of FEBDC is based on a Kintex-7 FPGA, which is configured by a Serial Peripheral Interface (SPI) flash. The FPGA also accomplishs the configuration and data readout of up to eight FEB boards, and all the data transceiver with PC through a commercial Ethernet chip. The FEBDC can readout the sTGC signals, evaluate the sTGC performance which can help optimize the production of sTGC chambers.

2. Test System Architecture

A. Hardware

The schematic block diagram of the FEBDC is shown in Fig. 1. The core of FEBDC is based on a Kintex-7 FPGA, which is configured by a Serial Peripheral Interface (SPI) flash. The upper eight miniSAS connectors are designed to connect and communicate with four pad FEB and four strip FEB boards each. When four pFEB and four sFEB boards are mounted on a real sTGC quadruplet, the miniSAS connector is used to receive the configuration data from the upper driver card and send out the raw data of front-end circuits. So the FEBDC will act as the upper driver card. It will configure and collect the signal of a full scale 4-layer sTGC chamber.

The Ethernet PHY is a physical layer device for 1000BASE-T, 100BASE-TX, and 10BASE-T application. The Graphical User Interface running on a PC will download the command and configuration data to the FPGA through the Ethernet chip. FPGA will decode the command, then distributes the configuration data the corresponding FEBs through miniSAS connectors. And also the hit event raw data was readout through the miniSAS connectors. The photo of FEBDC is shown in Fig. 2.

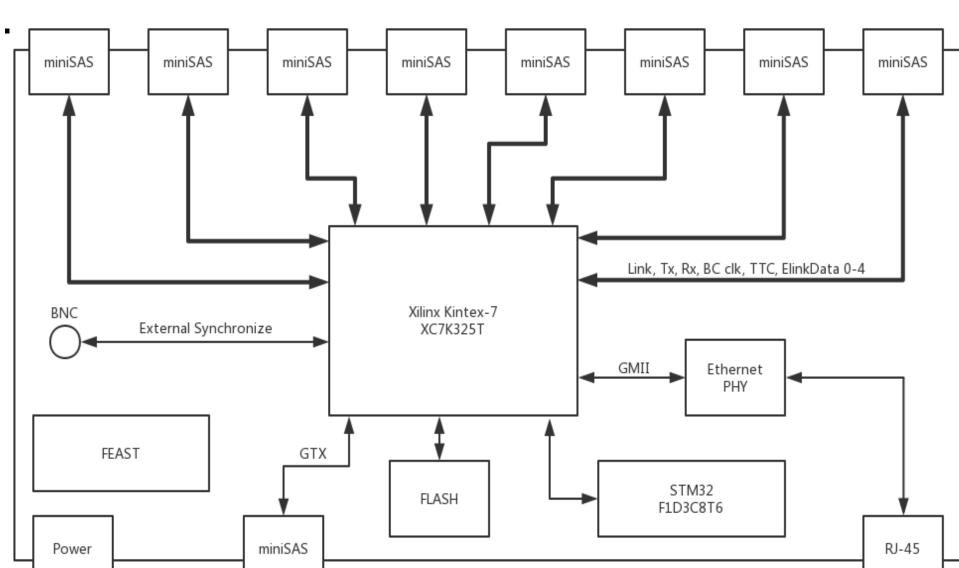


Fig. 1. Block diagram of the FEB Driver Card

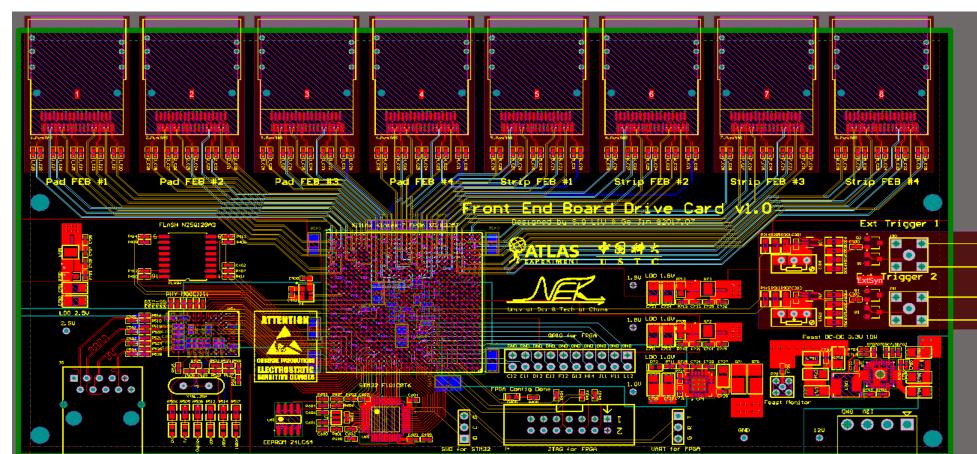
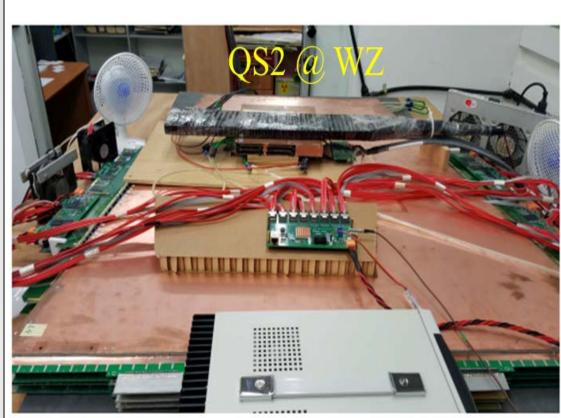


Fig. 2 the photo of FEBDC


B. Initialization and Data Readout of FEBDC

The VMM3[4,5] chips on the p/sFEB boards need to be configured, the configuration stream is 1728-bit length in one VMM3. On sFEB, all the 8 VMM3s are inter-connected in a daisy-chain, the total configuration stream will be 1728*8bits length. And on pFEB, all the three VMMs will need 1728*3bits configuration data. The configuration bits are set in a graphical user interface (GUI). The GUI is designed based on Qt platform. The GUI running on a PC will download the command and configuration data to the FPGA through the Ethernet chip. FPGA will decode the command, then works in corresponding modes. All the data from p/sFEB boards will be packaged and transmitted to PC through Ethernet also.

The GUI will also decode the event raw data and give out the hit channel number, the BCID, the amplitude and the hit time information of the event, which will help to evaluate the performance of sTGC quadruplets.

3. Test Results

The FEBDC and p/sFEB v2.1 boards are used at Shandong University and Weizmann Institute of Israel,-- They are both the sTGC production sites --, to study and monitor the sTGC quadruplets performance, which can be seen in Fig 3 and Fig 4. The system will also be used to inspect and optimize the production of chambers in the future.

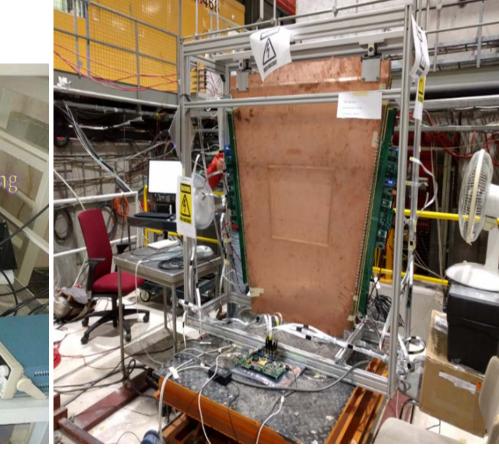


Fig. 3 sTGC test setup at Weizmann/SDU/CERN

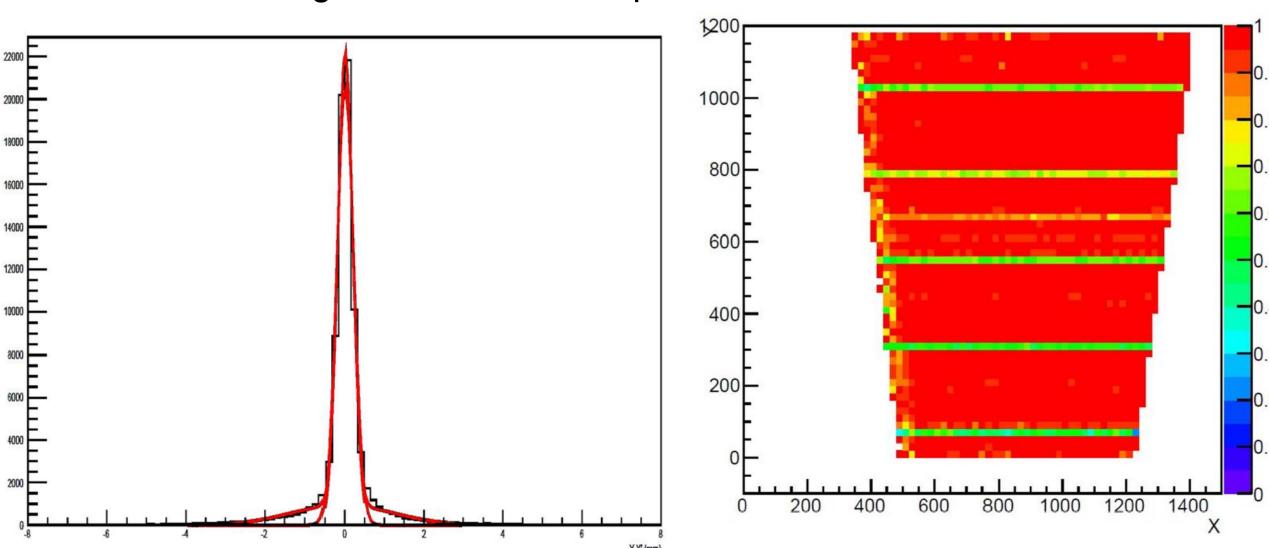


Fig. 4 sTGC spatial resolution(0.152mm) and single layer detection efficiency

4.Conclusions

In this paper, the Front End Board Driver Card based on high performance FPGA and Gigabit Ethernet interface is described. The hardware design and data readout are discussed in details. The FEBDC has be used for sTGC chamber performance site test. And it will devote to the sTGC performance monitoring during the chamber production and evaluation.

Acknowledgment

We want to thank Brookhaven National Laboratory for the VMM3 configuration support.

References

- 1. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST **3** S0800S (2008).
- 2. ATLAS Collaboration, New Small Wheel Techincal Design Report, No. CERNLHCC-2013-006 or ATLAS-TDR-020, http://cds.cern.ch/record/1552862.
- 3. S. Majewski, et al., A Thin multiwire chamber operating in the high multiplication mode, Nucl. Instr. Meth. A **217**, 265 (1983).
- 4. G. De Geronimo et al., VMM1-An ASIC for micropattern detectors, IEEE Trans. Nucl. Sc., **60**, 2314 (2012).
- 5. Brookhaven National Laboratory. ATLAS NSW Electronics Specifications Components: VMM3 2017.4, https://twiki.cern.ch/twiki/bin/viewauth/Atlas/NSWelectronics