

The Large Synoptic Survey Telescope Camera Data Acquisition System

SLAC National Accelerator Laboratory

21st IEEE Real Time Conference
June 12, 2018

WA 6

What is LSST?

- LSST is a telescope that is being built on Cerro Pachón in Chile
 - Will conduct a 10-year survey of the optical sky
 - Scheduled to begin in 2022
 - Has an 8.4m primary mirror and wide field of view
 - One image will cover 49 times the area of the full moon
 - Able to survey the southern hemisphere sky every few nights in 6 wavelength bands
 - Data will be archived at NCSA and made publicly available along with tools to access and study it
 - The final image collection will be 0.5 exabytes
 - The peak compute power in LSST data centers will be 1.8 PFLOPS
- Diverse science goals drive LSST
 - The Nature of Dark Matter and Dark Energy
 - Cataloging the Solar System (moving objects)
 - Exploring the Changing Optical Sky
 - Milky Way Structure and Formation

The LSST Camera

- The largest digital camera constructed for astronomy
 - 3.2 Gigapixels digitized with 18-bit accuracy
 - Each 16-megapixel sensor is read out in parallel by 16 amplifiers
 - 189 science sensors
 - 8 guide sensors
 - 4 wavefront sensors
- 3 science sensors are controlled by a Readout Electronic Board (REB)
 - Three REBs and their associated sensors form a mechanical unit called a Raft
 - There are 21 Science Rafts
- Guiding and wavefront sensors are contained in the four Corner Rafts
- Nominal cadence is 17 seconds
 - 15 second exposure
 - 2 second readout
- Project completion scheduled for mid-2020

4 Corner areas for wavefront sensing (green) and guiding (yellow).

21 rafts make up the science array

The Camera DAQ

- Provides access to image data to multiple, concurrent clients at read-out rate, in "real-time"
 - Read-out rate is ~3.6 Gigabytes/second
- Buffers all data for up to 7 days
 - This allows continued observation from the summit in the event of communication loss
 - 2 days covers the Mean Time To Repair (MTTR) for summit/base
 - 7 days covers the MTTR for base/NCSA
- Provides cross-talk corrected data if requested
- Provides access to raft electronics for the purpose of configuration, control, and monitoring
- Provides common system clock & synchronous timing
- Provide windowed guiding data at 9 Hz

The DAQ Components and Clients

DAQ System Novelties

- "Event" size is large at 7.2 GB and rate is low at 0.06 Hz
 - And that data is almost exclusively collected at night...
- However, we must provide the data at the rate it is generated in the front end
- DAQ latency requirements are driven by the Observatory realtime alert latency of 60 seconds
 - ~10 million such alerts are expected to be generated each night
- DAQ client machines are distributed over more than 100 km
 - All clients, and indeed DAQ compute elements, are equal peers on a single 10G Ethernet
- There are 142 high speed serial links which must penetrate the cryostat in a very limited area (6 x ~8 cm²) and then travel
 145 meters to the summit computer room

Block diagram of the DAQ System

The Raft Electronics Board

- Each REB, regardless of type (Science, Guider, or Wavefront) contains an identical FPGA
- FPGA firmware is partitioned into two components separated by a controlled interface
 - The Source Communication Interface (SCI) provided by the DAQ
 - The sensor specific logic provided by the electronics group
- The DAQ specifies the Data connector and its pinout

The Source Communication Interface

LSST/FIGURES/SCI/SCI_BLOCK_V9

See Stefano Russo's poster 446 for some of what goes in the SSL box!

A small, lightweight, self-contained set of firmware sharing the FPGA with the Sensor Specific Logic

Employs high speed (3.125 Gbits/sec) point-to-point, serial communication protocol (PGP)

- Protocol assures QOS through four Virtual Channels
- The SCI has four principal functions
 - Provide a stable, system reference clock and synchronous commands
 - This clock is the recovered clock from the serial data link
 - Reliably encode and transmit 18-bit pixel data to the CDS
 - Provide a mechanism for external configuration, control and monitoring of the REB's sensor electronics

Cables between SCI & OTM

- 3M Twin Axial cable
 - Longitudinal aluminum shield
 - 2 ground wires connected to shield
 - 4 pairs for high speed signals

- Impedance : 100 Ohm

Propagation delay : 4.95 ns/m

- Intra-pair skew : <10 ps @ 3 m

- Attenuation : -4.9 dB/m @ 10 GHz

- 4 single ended "sideband" signals
- 1 mm minimum bend radius
- High speed pairs (PGP primary & redundant)
- 4 single ended wires (used as 2 LVDS pairs)
- Terminations
 - REB side uses Mini-SAS connector
 - OTM side soldered directly to OTM

The Optical Transition Module

- Two purposes
 - Converts signals between copper and fiber
 - Penetrates the cryostat
- The PCB board is potted into a 3 3/8"
 Conflat vacuum flange
 - The vacuum side connects to 12 SCIs over copper
 - The air side has two transceivers
 - One is active, the other a cold spare
 - connected to the SCI primary and redundant links, respectively
 - Selection is done by powering one or the other
 - Each transceiver accepts a 24-fiber MTP connector
- 6 OTMs serve the focal plane's 71 SCIs
 - 12 cables pass through the Camera's Utility Trunk to the Camera/Telescope Interface

Fiber run between camera & summit computer room

- The Telescope provides the fiber between the Camera and the summit computer room
 - Camera DAQ specifies the optical properties
- The fiber run from the camera to the CDS is 145m

 Endpoint disconnects shown at the Camera (a) and CDS in the computer room (e)

The Camera Data System

- The CDS is a 14 slot ATCA shelf with a full mesh backplane
- The Front Boards are custom carrier boards (COBs)
 - Each carries 8 Reconfigurable Cluster Elements (RCEs)
 - Ours are Xilinx Zynq-7000 SoC based
- COBs are partitioned into two sets defined by their RTM
 - 3 service the FPA (FPA RTM)
 - 8 CXP transceivers, one connected to each RCE
 - 11 service the Image Store (SSD RTM)
 - 24 SSDs, three connected to each RCE
- The system clock is distributed to all RCEs from a master over the ATCA Clock Synchronization Bus
 - This is used as the reference clock for the Zynq GTX transceivers
 - When recovered in the SCI, this clock is shared by all REBs
- Serialized commands are also fanned out to all RCEs this way
 - From there they are sent to the SCIs with fixed latency

The Reconfigurable Cluster Element

FPA-RTM

To (up to) 9 SCI's on 1 to 3 rafts

To COB (its RCEs)

To COB (its RCEs)

Status and Summary

- All the hardware for the DAQ has been prototyped, and full production runs will occur this year
- Scaled down versions of the CDS and its associated software have been used by other LSST groups in their development for many years
- Work remains on the final implementation of the Image Store,
 Guider Data System, and Crosstalk Correction
- The LSST Camera DAQ has features that distinguish it from other large experiment's DAQ systems
 - The large geographic distribution of its components
 - The need to buffer many days worth of data
 - The high speed serial data are generated in a cryostat and need to get out

End of Presentation

