

μTCA DAQ system and parallel reading in CANDLES experiment

Bui Tuan Khai^A, S.Ajimura^A, K.Kanagawa^A, T.Maeda^A, M.Nomachi^A, Y.Sugaya^A, K.Suzuki^B and M.Tsuzuki^A

A Osaka University, B The Wakasa Wan Energy Research Center

21st Real Time Conference, Williamsburg, V.A.

June $9^{th} \sim 15^{th}$, 2018

CANDLES experiment

- Search for Neutrino-less Double Beta Decay (0νββ) from ⁴⁸Ca
- \Rightarrow Violate Lepton number conservation \Rightarrow **Physics beyond SM**
- \Rightarrow Very rare events: $T_{1/2}(^{48}Ca) > 10^{22}$ years $^{[1]}$ (not observed yet)
- We need:
 - Large amount of source
 - \Rightarrow 96 crystals of CaF₂ (detector and source): 300g of ⁴⁸Ca
 - Low background
 - ⇒ Passive shielding: set up at Kamioka (2700m.w.e underground)
 - \Rightarrow 4 π active shielding: CaF₂ immerged in Liquid Scintillator (LS)
- Difference in pulse shape: LS (10ns), CaF₂ (1μsec)
 - ⇒ PSD (Pulse Shape Discrimination) + FADC
- 62 PMTs surrounding: 48 on side, 14 at top and bottom
- Everything is mounted inside a cylindrical water tank (h4mxh3m)

[0] CANDLES website: http://www.rcnp.osaka-u.ac.jp/~umehara/Public/index.html?Lang=EN [1] S. Umehara et al. (2008), Phys. Rev. C 78, 058051.

Requirement for DAQ system

- \clubsuit Background near $Q_{\beta\beta}$ of ⁴⁸Ca:

 Most background: removed by active shielding
- \circ 2 $\nu\beta\beta$ => need energy resolution
- \circ External background (n, γ) => need passive shielding
- Impurities background:
 - BiPo (214 Bi \rightarrow 214 Po) sequential decay => need PSD
- ^{208}Tl β -decay: remove by tagging preceding α -decay
- ⇒ Need small dead-time at 20cps (CANDLES trigger rate)
- \Rightarrow demand for DAQ
- ❖ Waveform: measured by 500 MHz-8bits FADC
 - 640Bytes×74Channels(~50kB)
- ❖ 2006, we started development of FADCs on ATCA \Rightarrow Ref [2], [3], [4]

Beta-decays of ²⁰⁸Tl behave as background of CANDLES

- [2] Nomachi and Ajimura, IEEE Trans. Nucl. Sci., Vol. 53, No. 5, 2006.
- [3] K. Suzuki, Real Time Conference, 2014 (Nara, Japan).
- [4] T. Maeda, Real Time Conference, 2014 (Nara, Japan).

SpaceWire network in DAQ system

SpaceWire

- connect sub-systems onboard spacecraft [5]
- developed from DS-links [6]
- o 10~200Mbps (100Mbps in CANDLES), bi-directional, full-duplex data
- Point-to-point data links (LVDS) and flexible routing switches

[3] K. Suzuki, Real Time Conference, 2014 (Nara, Japan). [6] http://cds.cern.ch/record/3630 [5] http://spacewire.esa.int/content/Standard/Standard.php: SpW is ECSS-E-ST-50-12C

- ❖ SpW for FADC-to-PC (previous DAQ – ATCA [3])
- SpW I/F in FPGA
- SpW-to-PCle I/F in PC
- Short latency
- SpW-GbE for FADC-to-PC (new DAQ μTCA)
- SpW-GbE converter
- Easy interface to PC
- High latency

Set up of new DAQ system

(74 channels => divided in 4 crates)

- Each crate: 1 MCH + 9~10 FADCs (2Channels/FADC)
- Master Module distributes <u>clock</u> and <u>trigger</u> signals.

- We need:
- 1.Readout data via SpW/GbE
- 2. Collect local trigger
 - → Broadcast global trigger
- 3. Clock distribution

Inside MCH: 3 FPGAs (GbE-SpW, Trigger, SpW Router)

[7] JAXA: http://global.jaxa.jp/

[8] Shimafuji: http://www.shimafuji.co.jp/

(All 3 FPGAs: Spartan6 XC6SLX100)

Data Readout:

<u>Trigger</u>: select CaF_2 event using Dual Gate trigger^[4] <u>Gather local triggers</u>: FADCs \rightarrow Trigger \rightarrow Master Module

Distribute global trigger: Master Module \rightarrow Trigger \rightarrow FADCs

<u>Trigger</u>: select CaF₂ event using Dual Gate trigger^[4]

<u>Gather local triggers</u>: FADCs \rightarrow Trigger \rightarrow Master Module

<u>Distribute global trigger</u>: Master Module \rightarrow Trigger \rightarrow FADCs

⇒ When global trigger comes, waveform is stored in buffer

SpaceWire readout

- SpW with RMAP (Remote Memory Access Protocol [5])
- RMAP: transaction of request and reply
- SpW-GbE: long latency ~100μsec
- ⇒ Due to long turnaround time
- ⇒ Utilization is small
- ⇒ Parallel reading to reduce read-time
 - ⇒ "crate parallel" and "event parallel"

Fig. Read Time in one transaction Most of time is waiting time.

Utilization if very small

SpaceWire readout: parallel readout

- 74 FADC channels \Rightarrow 4 crates
- Event fragments in each crate
- With no parallel reading, PC reads all crates one by one (full data set)

With "crate parallel":

Data in 4 crates are read at the same time

⇒ x4 times faster		Reader1			
		Event 1	Event 2	Event 3	Event 4
	Crate 1	Frag 1	Frag 1	Frag 1	Frag 1
	Crate 2	Frag 2	Frag 2	Frag 2	Frag 2
	Crate 3	Frag 3	Frag 3	Frag 3	Frag 3
	Crate 4	Frag 4	Frag 4	Frag 4	Frag 4

With 2 "event parallel":

- 2 readers readout events at the same time
- ⇒ x8 times faster

DAQ-Middleware configuration

- Fast Reader (for FADCs)
- Slow Reader (HV, temperature, etc.)

- In CANDLES, we use DAQ-Middleware framework (by KEK [9]) for DAQ software
- This DAQ software was developed in previous ATCA system [3]
 - \Rightarrow We reused DAQ-MW in this μ TCA system
 - ⇒ Crate Parallel readout inside Fast Reader
- "Event Builder": not introduced in our DAQ-MW
- With multithread, event building inside Fast Reader.

[3] K. Suzuki, Real Time Conference, 2014 (Nara, Japan), [9] http://dagmw.kek.jp/

Read-time in parallel readout

Configuration	Read-Time/event (msec)	Data rate* (MB/sec)
1 thread	40.4 ± 3.1	1.23
2 threads	20.2 ± 1.2	2.45
4 threads	10.1 ± 0.6	4.90

^{*} Event data size: ~50kBytes (49.552 kBytes)

- We configure DAQ-MW to measure with
 - 1, 2, 4 threads to check read time
- \Rightarrow Sharing data from all 4 μ TCA crates:
 - 1 thread: 1 crate/time
 - 2 threads: 2 crates/time
 - 4 threads: 4 crates/time
- Read-time is reduced x4 times with 4 threads: ~40msec → ~10msec

❖ DAQ performance with Multiple Buffers

measurement calculation

For reducing dead-time, we use 8 event buffers as derandomizer.

With read-time/event 10msec, we can calculate inefficiency as a function of event buffer.

For 20cps (CANDLES trigger rate), inefficiency with 8 event buffers is $<10^{-8}$

- >1 event lost after ~60days to data taking
- ⇒Too long to measure
- Thus, we calculate and measure at 40cps
- ⇒ Consistence: data and calculation

❖ DAQ performance µTCA

- Check efficiency at different trigger rate
- Parallel readings: 4 threads/1PC
- μTCA: 3 buffers and 8 buffers
- ATCA: 3 buffers (previous DAQ)
- At 20cps:

ATCA (3 buffers / 3 PCs)	Efficiency 98%~99%
μTCA (8 buffers / 1 PC)	No event lost after 63hr of data taking [*] \Rightarrow Inefficiency < 10 ⁻⁶

 $\Rightarrow \mu$ TCA has enough performance for CANDLES

"Event Parallel" for high trigger rate

- "Event parallel": read event in buffers in parallel
 - ⇒2 Fast Readers (4 threads/reader) read 8 buffers of all FADCs
 - ⇒one for odd buffers and one for even buffers

RI source used in calibration

- ⇒ High trigger rate (upto a few kHz)
- ⇒ All buffers are always occupied (event buffers not help)
- ⇒ Need high throughput
- ⇒"event parallel" readout is effective

Accepted Rate of "Event Parallel"

- Accepted rate measurement
- ⇒Changing random trigger rate (30Hz to 2kHz)
- ⇒Compare 2 (Fast) Readers and 1 (Fast) Readers
- Max Rate (1 Reader): ~100cps
- Max Rate (2 Readers): ~200cps
- \Rightarrow x2 times faster

SUMMARY (1)

- New μTCA DAQ is introduced in CANDLES with:
 - New AMC-FADCs: 8 "Event Buffers" to reduce dead-time
 - SpaceWire-to-GigabitEthernet (SpW-GbE) network
- SpW-GbE network has overhead due to software
 - ⇒We handle it with parallel readout
- Module parallel with multiple threads is introduced
 - ⇒4 threads: **read-time reduced 4 times** (~40msec down to ~10msec)
- Inefficiency(at 20cps CANDLES trigger rate) is < 10⁻⁶ from experiment data.
 - \Rightarrow In our estimation, we can achieve <10⁻⁸ (~60days of measurement)

SUMMARY (2)

- At high trigger rate: event buffers are always occupied
- ⇒ Need high throughput (instead of event buffers)
- ⇒ "Event parallel" can increase the throughput
- ⇒ Set up 2 Readers reading 8 event buffers
- \Rightarrow accepted rate is increased x2 times (100cps -> 200cps)

THANK YOU FOR YOUR ATTENTION