FPGA code for the data acquisition and real-time processing prototype of the ITER Radial Neutron Camera

A. Fernandes1*, N. Cruz1, B. Santos1, P.F. Carvalho1, J. Sousa1, B. Gonçalves1, M. Riva2, F. Pollastrone2, C. Cetioli2, D. Marocco2, B. Esposito2, C.M.B.A. Correia3, and R.C. Pereira1

*anaf@ipfn.tecnico.ulisboa.pt

1 Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.

2 ENEA C. R. Frascati, Dipartimento FSN, via E. Fermi 45, 00044 Frascati (Roma), Italy.

3 LIBPhys-UC, Department of Physics, University of Coimbra, P-3004 516 Coimbra, Portugal

Acknowledgements
The work leading to this publication has been funded partially by Fusion for Energy under the Contract F4E-FPA-327. IST activities also received financial support from “Fundação para a Ciência e Tecnologia” through project UID/FIS/50010/2013. This publication reflects the views only of the author, and Fusion for Energy cannot be held responsible for any use which may be made of the information contained therein.
Motivation

ITER Radial Neutron Camera (RNC) diagnostic main goal: measure in Real-Time (RT) the plasma neutron emissivity profile at high peak count rates for a time duration up to 500 s.

Unprecedented high performance conditions expected → set of activities selected, focused on the development of high priority prototypes, capable to deliver answers to critical issues before the final RNC design.

FPGA code for the front-end electronics prototype aims to acquire, process and store in RT the neutron and gamma pulses from the detectors located in collimated LOS viewing a plasma poloidal section.

IPFN task: design, development and testing of the common data-path and dedicated FPGA-side algorithms for RNC front end electronics prototype.
RNC Front End Electronics Prototype

Host PC:
Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz;
Scientific Linux 7;
kernel: 3.10-rt

Digitizer:
Xilinx evaluation board (**KC705**);
FPGA Mezzanine Card (**FMC-AD2-1600**) with 2 digitizer channels of 12-bit resolution @ 1600 MHz.
RNC FPGA CODE

Xilinx Vivado tool
2015.4/ 2017.4
HDL implementation
(Verilog)
Data Processing – Filter / Bypass

Digital Trapezoidal based Shaper (DTS) -> improvements in SNR; baseline restoring capabilities…
Data Processing – Event detection

Digital Pulse Processing in Nuclear Physics, CAEN, WP2081, Rev. 3, 2011
Data Processing – Events Storage (1/2)

- Synthetic input signal with several superimposed pulses (128 samples; PTRG 16 samples; THR. Level)

- Event data

- Event = n x PWIDTH

- TS

- LSB

- MSB

- EVENT

- cnt – decreasing counter

- yes

- no

- cnt = PWIDTH

- cnt = PWIDTH - 4

- cnt = 1
RT Processing – PSD (1/2)

Implementation based on DTS\(^1\):

- The FPGA n/γ PSD code receives data from filter module (DTS filtered data);
- PSD determined by the relation factor between the maximum (peak) of filtered pulses and its integration value – charge integration (CI)

\[Q \text{ - word 1} \ [63:0] \]

<table>
<thead>
<tr>
<th>63</th>
<th>48</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>reserved</td>
<td>TimeStamp</td>
<td></td>
</tr>
</tbody>
</table>

\[Q \text{ - word 2} \ [63:0] \]

<table>
<thead>
<tr>
<th>63</th>
<th>56</th>
<th>24</th>
<th>31</th>
<th>21</th>
<th>18</th>
<th>15</th>
<th>12</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsv</td>
<td>Cl</td>
<td>rsv</td>
<td>PU</td>
<td>N/γ/L</td>
<td>rsv</td>
<td>Peak</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other PSD methods might be feasible to implement\(^2,3\)

\(^1\) R.C. Pereira, Neutron/Gamma discrimination code based on trapezoidal filter, Fusion Engineering and Design (submitted)

RT Processing – PSD (2/2)

Processed data from PSD @ FPGA

Setup:
- **Synthetic data** based on theoretical particle shape of two combined CAEN channels
- **Ch. 1 – gamma; Ch. 2 - neutron**

Poisson distribution (~ 10 \% of pileup) applied to in each channel

- **PU detected @ FPGA**
- **n/γ PSD from FPGA**
- **Low sep. slope**
- **High sep. slope**
Packet with neutron (N) & gamma (γ) Pulse Height Spectra (PHS) + Counts, to be sent periodically to host:

<table>
<thead>
<tr>
<th>N_bin_1</th>
<th>N_bin_0</th>
<th>γ_bin_1</th>
<th>γ_bin_0</th>
<th>γ_bin_3</th>
<th>γ_bin_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>N_bin_(n-1)</td>
<td>n_bin_(n-2)</td>
<td>γ_bin_(n-1)</td>
<td>γ_bin_(n-2)</td>
<td>γ_total</td>
<td>n_total</td>
</tr>
</tbody>
</table>

- LED
- Single
- Pileup
- Total

- n tot wind DT
- n tot wind DD
- γ tot wind DT
- γ tot wind DD

bins with N counts

bins with γ counts

\[n – total \text{ spectra bins}^{**} \]

* no-calibrated spectra

**power of 2 (512, 1024, 2048 …)
RT Processing – PHS (2/2)

Setup:
- 100 ms acquisition of two CAEN channels
- 500kev/s each channel

FPGA neutron/gamma PHS

Ch1: gamma shaped pulses

Ch2: neutron shaped pulses
- Negotiates **data-paths between RX, TX and other FPGA blocks**;
- DMAs management and completion to requests **state machine**
- **3 DMAs** available - two DMAs for data transfer; 1 DMA for status reg.
System Control

- **Standard Hardware API (SHAPI)** – Guideline for designing hardware access APIs for xTCA systems, from PICMG® xTCA for Physics

 - Synchronization tasks between the board and the host done through **shared configuration registers**, located in the **host shared memory PCIe configuration space (BAR)**

![Diagram showing System Control](image)

- **Device Registers**
 - **Device reg.** (HW ID, dev. FW ID, version, capabilities)
 - **Fixed registers** (e.g. Vendor ID, Device ID …) settled in `shapi_include.v` (Global Include)

- **Modules Registers**
 - Standard module 1 reg. + FMC dedicated reg. (DMA addresses; acq. and conf. parameters; status …)
 - Not used
Conclusions

✓ The Front End Electronics **FPGA code** designed and successfully implemented in the RNC prototype.

FPGA code **includes**:

- **Signal conditioning**;
- **RT processing** – filtering, event and pileup detection, event storage, PSD and PHA;
- **Data streaming** - two DMAs for real-time data streaming (event-based / PSD or PHS processed data); one DMA for status.

✓ Code tested with **synthetic data** in laboratory:

- maximum throughput: **1600 MB/s** (maximum allowed for 2 channels @ 400 MHz – continuous acquisition);

- **PSD relation factors** from FPGA able to **distinguish neutron /gamma** → further improvements for PU detection identified (overcome the DTS smoothing effect);

- **PHS successfully tested** → might be difficult to operate in experiments with high fluctuation of the separation slopes.