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Removing noise in computer tomography (CT) data for real-time 3D visualization is vital to improving the quality of the final
display. However, the CT noise cannot be removed by straight averaging because the noise has a broadband spatial frequency that
is overlapping with the interesting signal frequencies. To improve the display of structures and features contained in the data, we
present spatially variant filtering that performs averaging of sub-regions around a central region. We compare our filter with four
other similar spatially variant filters regarding entropy and processing time. The results demonstrate significant improvement of
the visual quality with processing time still within the millisecond range.

Index Terms—Visualization, Denoising, Monitoring.

I. INTRODUCTION

IN recent years, X-ray computed tomography (CT) imaging
allows biologists to study the internal structure of small

animals such as insects and other arthropods [1]–[3]. However,
noise is inevitable in data produced by CT. It arises from
various sources such as photon detection statistics, detector
misalignment, reconstruction algorithms, and so on [4], [5].
Hence, the visualization of the original CT data with the in-
herited noise obscures the user from identifying the structures
and features contained in the data. Even when the user filters
the information manually, essential details could be lost due
to the broad spectral range of the CT noise, overlapping with
the signal frequencies of interest [6].

Most research emphasizes offline data processing perform-
ing data segmentation for a better understanding of the
inner data structure. Lösel and Heuveline [7] described a
semi-automated segmentation approach based on the random
walk algorithm. As a result, noise is removed by the time-
consuming segmentation process. In this paper, we aim to
provide a fast preview of the original CT data. We focus on
real-time rendering where the noisy data must be processed
within the millisecond range. Note that we do not remove
any data but suppress the noise. The user has the opportunity
to inspect the full range of data including the noise at any
time. We consider a form of spatially variant filtering of CT
volume based upon the differences between the frequency
characteristics of the noise and the signal.

There are two major approaches for spatial filtering of CT
noise. In the first approach, the projection data is processed
(before the reconstruction step) [8], [9]. In the second ap-
proach, the reconstructed data is processed (after the recon-
struction step) [10], [11]. We chose the latter approach to
have a general solution, which is independent of the diverse
requirements of CT scanners [12].

Figure 1 shows the tomographic-oriented scientific work-
flow in which we highlight where our visualization service
fits in the flow (labeled in red). During the data acquisition
phase, our service provides rapid feedback on the data quality,
allowing users to monitor and adjust experiment setups in real-

time. To provide the final interactive 3D surface rendering, we
adopted the GPU direct volume rendering approach [13] by
terminating the ray casting iteration at the surface intersection
point. Since we are using voxel data, we compute the normal
vector using the 3D Sobel operator [14] and apply illumination
models on the surface points, i.e., the Phong illumination
model [15].

In this paper, we present a local noise filter which takes the
diagonally spread neighborhood points to represent the final
value. For each ray iteration, the surface intersection point
serves as the central voxel where we perform averaging with
its adjacent neighboring voxels—average cluster. We repeat
the averaging with eight other average clusters spread diago-
nally with a distance of

√
3 units from the central voxel. The

resulting average is subjected to the data threshold value where
any value lower than the threshold is treated as noise. We
determine the data threshold value by using the Otsu-threshold
method [16], which summarises the data in a binary format.
As a result, we can suppress the noise in real-time (millisecond
range) while preserving the underlying data structure.

II. RELATED WORK

Most studies of spatial filtering are performed offline with
two-dimensional CT images. Since the CT volume is often
provided as a stack of 2D cross-sectional images [17], various
2D filters are applied to remove the CT noise. We will study
these filters and apply them later in the 3D context (Section V).
Hence, we will use the term point rather than voxel throughout
this section.

Low-pass filtering is the most common filter that replaces
each point with the average values of the defined kernel
size [18], [19]. Low-pass filtering removes the high frequen-
cies from the volume data which reduces the noise and
improves the detectability of data structure. However, the filter
reduces the intrinsic resolution of the data, i.e., smoothes edges
and decreases the visibility of small structures. Since the low-
pass filter is non-deterministic, an increasing kernel size will
lead to the unintended removal of data.

Okada [6] presented an approach based on the assumption
that significant differences between neighboring voxels are
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Fig. 1. Picture of the image processing pipeline for a tomography-oriented scientific workflow. The red represents the stage, where we enable rapid feedback
of the data quality visually.

unlikely to be caused by noise. Okada’s approach smoothes
only the voxels with a difference to adjacent voxels below a
predefined threshold.

Lee et al. [20] presented the sigma filter which assumes
a Gaussian distribution of CT noise. They showed the effec-
tiveness of the sigma filter in preserving subtle details and
line features as long as the intensity difference between them
and their background is higher than the two-sigma intensity
range. In other words, the sigma filter only considers grey
values that fall within the 2-sigma intensity range and then it
performs a straight averaging on the selected values. Similarly,
McDonnell [21] presented an extended box-filtering approach
that defines the intensity region empirically.

Apart from spatial filtering, we also considered an entropy-
based approach which calculates the information entropy of a
given kernel [22]–[24]. We use the Shannon-Wiener entropy
criterion [25] to characterize the noise distribution—average
uncertainty of the values—within the kernel. However, the
influence of random effects can adversely affect the accuracy
of entropy calculation [26].

III. CT DATA AND 3D VISUALISATION

The tachinid fly Gymnosoma nudifrons (Herting, 1966) had
been fixed and stored in 70% EtOH. The unstained sample
was scanned using SRµCT at the ANKA synchrotron radiation
facility [27], [28]. We used a beam energy of 20 keV and
3000 projections at 250 projections per second. We used a
magnification of 1.8x with a resulting field of view of 1.2
mm and an effective pixel size of 6.11 µm. The scanned
data (projection data) are later reconstructed and stored on
the experiment server.

The 3D interactive visualization system is part of the
raycasting framework [29] that allows users to visualize the
reconstructed data from the experiment station. Our visu-
alization approach uses the GPU direct volume rendering
approach [13] that performs ray casting on the voxel data. For
surface rendering, we terminate the ray iteration at the surface
intersection point onto which we then apply illumination
models such as the Phong illumination model [15]. Since we
are dealing with voxel data, we approximate the normal vector
of the surface point by using the 3D Sobel operator [14].
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Fig. 2. Illustration of the average cluster which takes the average of central
voxels and its adjacent neighbors. P denotes the voxel, and S represents the
average cluster. The average of nine average clusters (S0...S8) is used to
represent the surface intersection point.

IV. OUR METHOD

In our approach, we perform spatial filtering in real-time
that suppresses the noise at the first surface intersection point
within the volume rendering framework. Hence, we consider
spatial voxels in the 3D space. Most filters (Section II) are
applied to 2D cross-sectional images of a volumetric data
and remove noise permanently. In contrast, our approach
preserves the original data and thus encourages visual data
exploration [30].

Our method modifies the mean filter because the mean filter
tends to provide us with an over-averaged result: using small
kernel (3 × 3 × 3) cannot suppress spot noise, and larger
kernel (5 × 5 × 5 or 7 × 7 × 7) removes details of the data
structure. Instead, we average smaller regions (3×3×3) spread
around the central kernel to give us a better result. We consider
nine small regions, dubbed as average clusters (S0 . . . S8): 8
regions spread diagonally with a distance of

√
3 units from the

central kernel (S1 . . . S8), and the region at the central kernel
itself (S0) (Figure 2).

Our goal is to provide the user with the best visual quality
without any manual intervention. Along each ray iteration, the
local noise filter starts at the surface intersection point and
determines whether the position is noise. Firstly, it is vital
to decide on the threshold that separates the features of data
and the background noise automatically. Secondly, we aim to
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provide the best visual quality possible by suppressing the
noise artifacts and at the same time preserving the features
and structures of the data.

To determine the threshold of the data, we applied the Otsu
thresholding method which scans through the grey levels to
find the threshold that minimizes the intra-class variance—
weighted sum of variances of the two classes [16]

σ2
ω(T ) = ω0(T )σ2

0(T ) + ω1(T )σ2
1(T ) (1)

where ω0 and ω1 are the weights which represent the prob-
abilities of the two classes separated by the threshold T . σ2

0

and σ2
1 are the variances of the two classes. We use the Otsu

threshold as the lower limit of the intensity range.
After filtering the data with the Otsu-threshold T , we detect

a wide-array of surface intersection points. Each intersection
surface point serves as the central voxel where we determine
whether the corresponding voxel is noise or not. Here, we
compute the average value based on the central voxel together
with its adjacent neighbouring voxels within the kernel size,
M :

S0 =
1

3 ·M

(
M−1∑
i=0

P (sx + ∆i, sy, sz) +

M−1∑
i=0

P (sx, sy + ∆i, sz) +

M−1∑
i=0

P (sx, sy, sz + ∆i)

)
,

(2)

with

∆i = i− M − 1

2
. (3)

The P0 is the grey value of the central voxel with a spatial
coordinate of (Sx, Sy, Sz). The ∆i represents the offset value
from the central voxel. Let S0 be the average cluster at the
central voxel, we further take eight additional average clusters
(S1...S8) spread diagonally around the central voxel with a
distance of

√
3 units. We replace the corresponding voxel value

with the resulting average value from the nine clusters.

V. 3D SPATIAL NOISE FILTERS

For completeness, we describe how we adapted other spatial
noise filters (Section II) in our 3D visualization framework. In
particular, we consider low-pass filtering (mean filter), Okada
filter, sigma filter and the entropy filter. Similar to our method,
the filters start at the surface intersection point.

a) Mean Filter: We calculate the average of voxel values
that lies within the kernel size, M :

S =
1

M3

M−1∑
i=0

M−1∑
j=0

M−1∑
k=0

P (sx + ∆i, sy + ∆j, sz + ∆k)

 ,

(4)
where P is the grey value of the voxel with the spatial
coordinate of (Sx, Sy, Sz). The ∆i represents the offset value
from the central voxel which is defined as (i ∗ 1− 1).

b) Sigma Filter: Within the predefined kernel size M ,
the sigma filter only considers n voxel values that fall within
the intensity range specified by the global standard deviation.
Specifically, the intensity range must be within the 2σ region:

S =
1

n

n−1∑
i=0

Pi, ∀Pi ∈ [−2σ, 2σ]. (5)

c) Okada Filter: The Okada filter studies the difference
between the central voxel value, P0, with its neighboring voxel
values, Pi. We consider the neighboring voxels only when the
difference value is lower than the predefined threshold Td:

S =

{
1
n

∑n−1
i=0 Pi, if |P0 − Pi| < Td

0, otherwise,
(6)

where n is the total number of voxels that satisfy the condition
|P0 − Pi| < Td.

d) Entropy Filter: We calculate the first order entropy
H from m voxels within the kernel size M . Then, we set
an entropy threshold Te to determine the noise range. Before
filtering, we precompute the normalized frequency distribution
of the data to assign a probability pi to each grey level. If the
entropy criterion [24] exceeds our predefined threshold, then
we choose to display the central voxel value, P0.

S =

{
P0, if −

∑m−1
i=0 pi log2 (pi) > Te

0, otherwise.
(7)

VI. RESULTS AND DISCUSSION

The visualization framework is written in C++ OpenGL. We
included the filters described in Section IV and V where we
evaluated the visual quality and performance of each filter
respectively. Given the various tuning parameters for each
filter, we select the settings that suppress the most noise whilst
preserving fine details of the sample data. We will use a kernel
size of 3 (M = 3) throughout our evaluation.

A. Visual Quality

Figure 3 shows the visual quality of the tachinid fly data set.
For this particular data set, we calculated the Otsu-threshold
T as 101, and we will apply this threshold setting across the
filters.

Among the filters applied, the entropy filter performs the
worst because the noise and the useful data regions are
overlapping. Since the data is preprocessed by Amira® 5.6.0
(FEI, Munich, Germany), the manually sliced dataset produces
interpolation artifacts at the boundary layers. On the other
hand, the mean filter, the sigma filter, and the Okada filter
can suppress the noise considerably and outline the tachinid
fly details. However, stubborn spot noise is surrounding the
object.

In our approach, we included not only the average infor-
mation at the central voxel but also eight uniformly spread
average clusters for better noise-to-information analysis. As
a result, we suppress most of the noise including spot noise.
We further evaluated the final visual quality by calculating the
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Mean filter Sigma filter Entropy filter

Okada filter Our approach

Fig. 3. A visual comparison of the tachinid fly Gymnosoma nudifrons (Herting, 1966) data set between the mean filter (top left), the sigma filter (top middle),
the entropy filter (top right), the Okada filter (bottom left) and our approach (bottom right). The entropy filter fails to suppress the noise completely. Also,
there is still spot noise in the mean, sigma and Okada filters which our approach can suppress.
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Fig. 4. Visual comparison: Entropy value of the final 3D images produced
without any filter, with the mean filter, the sigma filter, the entropy filter, the
Okada filter and our approach. The lower the entropy value, the better.

entropy value on the resulting 3D images (Figure 4). The lower
the entropy value, the better is the visual quality. Our approach
has the lowest entropy value which is a clear indication
regarding the effectiveness of our filter in suppressing even
spot noise.

B. Performance

We measured the performance of the filters (Figure 5) using
an Intel® Core™ i5-4670 CPU (4 x 3.40GHz) with an NVIDIA

Tesla C2070. The mean filter is the fastest due to its simplicity
in taking all voxel values within the kernel and performing a
straight averaging. The Okada filter involves constant checking
of the difference value between the neighboring voxel and
the central voxel which leads to a slower time. Also, the
Okada filter only takes the six direct adjacent voxels into
consideration. On the other hand, the sigma filter considers
all the voxels within the defined kernel size, where its grey
values fall within the 2σ range. The entropy filter performs an
entropy computation (Equation 7) that increases the overall
complexity and hence the time needed for computation.

The time per frame for our approach is the highest among
the filters because of the extra average cluster fetching around
the central voxel. The idea is to cover a broader spatial
region to identify the characteristic of the current central voxel
accurately. Our approach takes longer in comparison to the
other spatial filters. The visual quality, however, is significantly
improved over the other filters while taking only 10 ms longer
than the (fastest) mean filter.

VII. CONCLUSIONS AND FUTURE WORK

We presented a local noise filter which takes the diagonally
spread neighborhood points to represent the final value. Our
filter is a combination of Otsu-threshold and the extended
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Fig. 5. Performance: Time measurement per frame of the mean filter, the
sigma filter, the entropy filter, the Okada filter and our approach. Less time
indicates a better performance.

mean filter methods to provide an automatic 3D visual ren-
dering of CT data and does not require user intervention. The
resulting 3D image suppresses even spot noise which was not
possible with other filters. Although our approach is similar
to the mean filter, we take more average clusters to improve
our final average value. The approach keeps the processing
time within the millisecond range (53 ms to render a frame)
making it suitable for an interactive visualization system.

For future work, we want to test our filter with a broader
set of CT data. We would like to study the effectiveness of
our filter to maintain the fine structure of small animals (for
example arthropods). For now, we evaluated our filter with
eight average clusters uniformly spread around the central
voxel with a unit distance of

√
3. It would be interesting

to analyze several variations and study the effects of each
combination.
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