Exascale HPC Technologies Performance, Portability, and Scalability

Peter Boyle

University of Edinburgh (Theoretical Particle Physics)
Alan Turing Institute (Intel ATI codesign project for Machine Learning)

- Exascale processor landscape
- Performance portability
- Interconnects
- Some QCD examples
 - · What can go right
 - What can go wrong
 - · Importance of deterministic good performance

- Floating point is now free
- Data motion is now key
- Feeding the beast is the problem ¹

- Berkely roofline model: Flops/Second = (Flops/ Byte) × (Bytes/Second)
 - One dimensional only memory bandwidth is considered
 - Arithmetic intensity = (Flops/ Byte)
- With more care can categorise data references by origin
 - · Cache, Memory, Network

¹possibly except for bitcoin mining

Immediate roadmap

- 400x+ increase in SP node performance accompanied by NO increase in interconnect
 - FP16 gain is 6x more again!
- US exascale systems planned in 2021, 2022 (Aurora/Argonne, Frontier/ORNL)
- Not a case of business as usual for algorithms!

Growing on chip parallelism...

Core	simd	Year	Vector bits	SP flops/clock/core	cores	flops/clock
Pentium III	SSE	1999	128	3	1	3
Pentium IV	SSE2	2001	128	4	1	4
Core2	SSE2/3/4	2006	128	8	2	16
Nehalem	SSE2/3/4	2008	128	8	10	80
Sandybridge	AVX	2011	256	16	12	192
Haswell	AVX2	2013	256	32	18	576
KNC	IMCI	2012	512	32	64	2048
KNL	AVX512	2016	512	64	72	4608
Skylake	AVX512	2017(?)	512	64	28	1792

- Growth in multi-core parallelism, growth in SIMD parallelism
- Growth in complexity of memory hierarchy
- Industry standard response is: "dump it on the programmer"

Wireloads and geometry

Gate				Mid	Level Metal	
Length	Dielectric	Metal ρ	Width	Aspect	R_{wire}	Curios
(nm)	Constant κ	$(\mu\Omega \cdot cm)$	(nm)	Ratio	$(m\Omega/\mu m)$	$(fF/\mu m)$
250	3.9	3.3	500	1.4	107	0.202
180	2.7	2.2	320	2.0	107	0.333
130	2.7	2.2	230	2.2	188	0.336
100	1.6	2.2	170	2.4	316	0.332
70	1.5	1.8	120	2.5	500	0.331
50	1.5	1.8	80	2.7	1020	0.341
35	1.5	1.8	60	2.9	1760	0.348

Physics creates computer architecture: model wire as rod of metal $L \times \pi r^2$

• Charge: Gauss's law

$$2\pi r L E = \frac{Q}{\varepsilon} \Rightarrow E = \frac{Q}{\varepsilon 2\pi r L}$$

Capacitance

$$C = Q/V = 2\pi L \varepsilon / log(r_0/r)$$

Resistance

$$R = \rho \frac{L}{\pi r^2}$$

Time constant

$$RC = 2
hoarepsilonrac{L^2}{r^2}/\log(r_0/r)\simrac{L^2}{r^2}$$

RC wire delay depends only on geometry: Shrinking does not speed up wire delay!

- "copper interconnect" (180nm) and "low-k" dielectric (100nm) improved ho and ϵ

Multi-core design with long-haul buses only possible strategy for 8 Billion transistors

- Low number of long range "broad" wires (bus/interconnect)
- High number of short range "thin" wires

Exciting technology directions

3D memory integration

- Apply to memory buses with through-silicon-via's (TSVs)!
- 10x increase in memory throughput at fixed power
 - Exploited in Nvidia GPU's, AMD GPU's, Intel Knight's Landing ©
 - Not yet exploited in Intel or AMD server parts
 - Direct mapped cache or distinct NUMA domain?

Network integration

- ullet KNL-F has on package 2 imes 100 Gbit/s Omnipath interfaces (marginal cost \$300 per node)
- Skylake/Purley will also integrate Omnipath
- Nividia can interconnect up to 8 GPU's with NVLINK

How to balance the engineering effort between subsystems is key

Processor technologies

- HBM / MCDRAM (500 1000 GB/s)
 - Intel Knights Landing (KNL) 16 GB (AXPY 450 GB/s)
 - Nvidia Pascal P100 16-32 GB (AXPY 600 GB/s)
 - Nvidia Volta V100 16-32 GB (AXPY 840 GB/s)
- GDDR (500 GB/s)
 - Nvidia GTX1080ti
- DDR (100-150 GB/s)
 - Intel Xeon, IBM Power9, AMD Zen, Cavium/Fujitsu ARM
 - ... when will these adopt 3D memory & how to organise?
 - Cache vs. NUMA domain

Chip	Clock	SM/cores	SP madd	issue	SP madd	peak	TDP		Mem BW
GPU									
P100	1.48 GHz	56 SM's	32	112×2	3584	10.5 TF/s	300W	\$ 9000	700 GB/s
GTX1080ti	1.48 GHz	56 SM's	32	112×2	3584	10.5 TF/s	300W	\$ 800	500 GB/s
V100	1.53 GHz	80 SM's	32	160×2	5120	15.7 TF/s	300W	\$ 10000	840 GB/s
Many-core									
KNL	1.4 GHz	36 L2 x 2 cores	32	72×2	2304	6.4 TF/s	215W	\$ 2000	450 GB/s
Multi-core									
Broadwell	2.5	18 cores	16	18×2	576	1.4 TF/s	165W	\$4000	55 GB/s
Skylake	3.0	28 cores	32	28×2	1792	5.3 TF/s	205W	\$8000	95 GB/s
Skylake	3.0	12 cores	16	12×2	384	1.15 TF/s	85W	\$1000	80 GB/s

IBM's Summit

- ORNL, 4608 nodes, will likely take top500 lead next week
 - 200 PF/s (double) at 10MW, 3 EF/s half precision for AI!
 - approx \$200M
- Each node:
 - 6 V100 GPU's, 90TF/s single precision, 750TF/s half precision for AI
 - 5000+ GB/s memory bandwidth
 - Strong interior, NVlink 75+75 GB/s per link interconnect (450 GB/s per GPU)
- Dual rail 50GB/s EDR exterior interconnect
 - 100:1 memory to network ratio ②
- Explicitly programme GPU-GPU and MPI (EDR) transfers for performance

HGX-2

- NVlink has been given an accompanying switch NVswitch enabling 16 GPU HGX-2 systems
- Very strong, and very expensive base node; sticking a network card on-it is not a solution for large systems
- Would desperately like to see this in an extensible mesh

Multiple chips/GPUs per node

Multi-socket servers: NUMA aware code

- hybrid OpenMP + MPI
- Use 1:1 mapping between MPI ranks and sockets
- Unix shared memory between sockets (over UPI)
- Reserve MPI transfers for inter-node

Multi-GPU servers: NVlink aware code

- Use 1:1 mapping between MPI ranks and GPU's
- Use Cuda to open up direct GPU-GPU device memory access over NVlink
- Reserve MPI transfers for inter-node, direct to GPU if possible

Performance portable programming

Caches and locality

Memory systems are granular

• Big gain from spatial locality of reference: use everything that gets transfered!

You don't buy a multipack if you only want one beer!

CPU SIMD model

SIMD brings a new level of restrictivness that is much harder to hit

- Code optimisations should expose spatial operation locality
- · Obvious applications in array and matrix processing but hard in general

contiguous block memory accesses with same operations performed on adjacent words

- Both granular memory transfers and SIMD execution need to be exploited
 - typically drop to "intrinsic functions" or assembly for CPU's
- change data layout from the standard language defined array ordering
 - we are fighting against the languages since these dictate memory layout!

GPU SIMT model

	CPU	GPU
Integer	scalar	vector
Floating	vector	vector
Caching	yes	yes
Contiguous vec loads	default	dynamically coalesced
Random vec loads	gather/scatter	default
Thread divergence	write masks	hardware managed

- For performance must arrange to have same operation applied to consecutive words
 - Coalesced accesses detected at runtime by GPU's
 - granular memory transfers and SIMD execution can then be exploited
 - Performance loss if threads diverge in address or control flow

contiguous block memory accesses with same operations performed on adjacent words

Consistent emerging solution : advanced C++

Granularity exposed through ISA/Performance ⇒ data structures must change with each architecture

OpenMP, OpenAcc do not address data layout

Several packages arriving at similar conclusions:

- Kokkos (Sandia)
- RAJA (Livermore)
- Grid (Edinburgh)

Use fairly advanced C++11 features, inline header template library

- Traditional OOP performance negative (virtual functions, passing objects, STL)
- Discipline and coding standards are required.

Consistent emerging solution : advanced C++

- 1. Abstract arrays & accessors through C++ container templates
- 2. Data layout changes with architecture
 - Trigger a partial vector transformation to suit architecture via template parameters
- 3. Capture potentially offloaded code in device lambda function

```
parallel_for(i,0,N, [=] accelerator (int i) mutable {
    // Lambda captures a,b,c,d, and constructs device function object
    a[i] = b[i] + c[i]*sin(d[i]);
});
```

- Raja: exposes policy controls for where loop executes https://github.com/LLNL/RAJA
- Kokkos: exposes policy controls for where loop executes, and views of layout https://github.com/kokkos
- Grid: hide in higher level data parallel interface for structured grids inspired by QDP-JIT (JLAB), but without the JIT

GRID data parallel template library

www.github.com/pabovle/Grid. arXiv:1512.03487²

Ordering	Layout	Vectorisation	Data Reuse
Microprocessor	Array-of-Structs (AoS)	Hard	Maximised
Vector	Struct-of-Array (SoA)	Easy	Minimised
Grid	Array-of-structs-of-short-vectors (AoSoSV)	Easy	Maximised

- Automatically transform layout of arrays of mathematical objects using vSIMD template parameter
- Conformable array operations are data parallel on the same Grid layout

```
vRealF, vRealD, vComplexF, vComplexD
template<class vtvpe> class iScalar
   vtvpe internal:
}:
template<class vtype,int N> class iVector
   vtvpe internal[N]:
}:
template<class vtype,int N> class iMatrix
   vtype _internal[N][N];
};
```

typedef Lattice<iMatrix<vComplexD> > LatticeColourMatrix; typedef iMatrix<ComplexD> ColourMatrix;

Internal type can be SIMD vectors or scalars

```
LatticeColourMatrix A(Grid):
LatticeColourMatrix B(Grid):
LatticeColourMatrix C(Grid):
LatticeColourMatrix dC_dy(Grid);
C = A*B:
const int Ydim = 1;
dC_{dy} = 0.5*Cshift(C,Ydim, 1)
      - 0.5*Cshift(C,Ydim,-1);
```

- High-level data parallel code gets 65% of peak on AVX2
- Single data parallelism model targets BOTH SIMD and threads efficiently.

²Also: good, flexible C++ object serialisation using variadic macros. IDL's not required. 4 💆 🕨 4 📱

Grid single node performance

Architecture	Cores	GF/s (Ls \times Dw)	peak
Intel Knight's Landing 7250	68	770	6100
Intel Knight's Corner	60	270	2400
Intel Skylakex2	48	1200	9200
Intel Broadwellx2	36	800	2700
Intel Haswell×2	32	640	2400
Intel lvybridgex2	24	270	920
AMD EPYCx2	64	590	3276
AMD Interlagosx4	32 (16)	80	628

- Dropped to inline assembly for key kernel in KNL and BlueGene/Q
- EPYC is MCM; ran 4 MPI ranks per socket, one per die

Common source GPU port is functional but under tuning.

- Simple data parallel code saturates memory bandwidth
- Use Unified Virtual Memory (i.e. automatic host-device transfers)

Interconnects ³

Interconnect technologies

- Integration of network on package useful: SKL-F, KNL-F
 - Recall IBM BlueGene integrated torus router on compute chip
- Silicon photonics
 - 100Gbit/s copper cables cost under 100 USD
 - 100Gbit/s active optical cables (4 bits) cost around 1000 USD
 - Hopefully silicon photonics can lower cost of optics

Never before in the field of computing, has so much been paid, by so many, for so few bits!

QCD sparse matrix PDE solver communications

- L4 local volume (space + time)
- finite difference operator 8 point stencil

Action	Fermion Vol	Surface	L_S	Flops	Bytes	Bytes/Flops
DWF	$L^4 \times N$	$8 \times L^3$	16	$L_8 \times 1320$	$L_S \times 864$	0.65

• $\sim \frac{1}{I}$ of data references come from off node

Scaling QCD sparse matrix requires interconnect bandwidth for halo exchange

$$B_{network} \sim \frac{B_{memory}}{L} \times R$$

where R is the *reuse* factor obtained for the stencil in caches

• Aim: Distribute 100⁴ datapoints over 10⁴ nodes

QCD on DiRAC BlueGene/Q (2012-2018)

Sustained 7.2 Pflop/s on 1.6 Million cores (Gordon Bell finalist SC 2013) Edinburgh system 98,304 cores (installed 2012)

QCD on DiRAC BlueGene/Q (2012-2018)

- Integrated router and large, midplane racks suppress optics cost by surface-to-volume
- No "extra" HFI components or switches: marginal cost of pennies per node.
- Arguably the whole point of VLSI...

Interconnect Requirements

$$B_{network} \sim \frac{B_{memory}}{L} \times R$$

• Project network requirement for balanced communication and computation

Nodes	Memory (GB/s)	Bidi	Bidi network requirement (GB/s)		
		L=10	L=16	L=32	L=64
2xBroadwell	100	100	16	8	
KNL	400	100	64	32	İ
P100	700	200	128	64	
V100	840	325	203	100	
Summit					
6×V100	5040	-	1950	1200	600
N. I. N. I. D.E. ICD/ I.B. C.					

Node	Network	Delivered GB/s	Require
KNL	Cray Aries	11	64
KNL	Single EDR	23	64
KNL	Dual EDR	45	64
KNL	Dual Omnipath	45	64
Summit	Dual EDR	45	1200

- Cori and Theta (Cray Aries) could really have done with dual rail EDR or Omnipath
- Dual 100GBit/s KNL has proved scalable on fine operator (e.g. Brookhaven cluster)

Networks and locality

Can we reduce the cost of networks?

- · We accept locality optimisation in almost every level of a computing system
- Providing full bisection bandwidth through a fat-tree switch is expensive
- · Torus networks have done well in the past; need smart application mapping in large systems
 - · e.g. cartesian communicators
- KNL-F and SKL-F integrate two HFI's on package; very few dual rail systems due to switch & cable costs

 BlueGene/Q: integrated routing network on compute chip; the point of VLSI As near to glueless assembly as possible with marginal additional cost

HPE ICE-XA hypercube network

Improvement over Default Process

Placement				
Nodes	Decomp	Bandwidth		
2	2x1x1x1	0.98		
4	2x2x1x1	1.00		
8	2x2x2x1	1.00		
16	4x2x2x1	1.27		
32	4x4x2x1	1.70		
64	4x4x4x1	2.00		
128	8x4x4x1	2.09		
256	8x8x4x1	2.60		
512	8x8x8x1	3.30		
1024	16x8x8x1	3.51		
2048	16x16x8x1	3.84		

- Small project with SGI/HPE on Mellanox EDR networks
- Embed 2ⁿ QCD torus inside hypercube so that nearest neigbour comms travels single hop 4x speed up over default MPI Cartesian communicators on large systems
 - \Rightarrow Customise HPE 8600 (SGI ICE-XA) to use $16 = 2^4$ nodes per leaf switch

DiRAC HPE ICE-XA hypercube network

- Edinburgh HPE 8600 system (Installed April 2018)
 - · Low end Skylake Silver4116, 12 core parts
 - · Single rail Omnipath interconnect
 - Relatively cheap node: high node count and scalability

Same tightly coupled problem on Summit

Use Nvidia QUDA code: This is a bad (apples to oranges) comparison at present for three reasons

- 1. Tesseract node is 1/2 price of a Volta GPU, currently 2x performance
 - But, Summit has 2x better price/performance for communication light code
- 2. Summit does not yet have Gpu Direct RDMA (GDR) enabling MPI from device memory
 - Anticipate 4x gain when GDR is enabled on Summit
 - If this bears up, break even on price/performance for this interconnect heavy code
- 3. Many problems, even in QCD, are not so communication heavy (e.g. multigrid Wilson)

All this worked out the box right?

- · Collaboration with Intel: concurrency updates to Intel MPI and Omnipath software stack
- Reentrancy to MPI needed with hybrid threads + MPI when many HFI's
- Avoid 4KB pages due to per page software overhead

https://arxiv.org/pdf/1711.04883.pdf

- Edinburgh-Brookhaven-Columbia-Intel paper
 - Brookhaven dual rail KNL/OPA system

Accelerating HPC codes on Intel® Omni-Path Architecture networks: From particle physics to Machine Learning

Peter Boyle, ¹ Michael Chuvelev, ² Guido Cossu, ³ Christopher Kelly, ⁴ Christoph Lehner, ⁵ and Lawrence Meadows ²

*The University of Edinburgh and Alan Turing Institute

*Intel**

2 Intel**

3 Intel**

2 Intel**

2 Intel**

2 Intel**

2 Intel**

2 Intel**

3 Intel**

4 Intel**

2 Intel**

2 Intel**

2 Intel**

2 Intel**

3 Intel**

4 Int

³The University of Edinburgh ⁴Columbia University ⁵Brookhaven National Luboratory

- Baidu "optimised reduction" code available open source online
- http://research.baidu.com/bringing-hpc-techniques-deep-learning/
- https://github.com/baidu-research/baidu-allreduce

DiRAC procurement benchmarks also required software updates for Mellanox HPCX 2.0

https://www.nextplatform.com/2017/11/29/the-battle-of-the-infinibands/

Importance of deterministic performance

- · Linux VM will fragment over time under use; probability of transparent huge pages decreases
- In a 1000 node system, random slow down translates to "convoy" mode for the whole system
- · Similar effects from dynamic frequency scaling events
- Can manifest itself unexplained poor scalability

	Arch/			Page	Time to read page /
Year	CPÚ	Reg file	Memory	Page/RF	Page count
	intel32			4KB	64 us
1985	80386	32B	640KB	127	160
	+x87			4KB	16 us
1993	80486DX	32B +80B	4MB	36	1024
	intel64			4KB	128ns
2003	Pentium4	128B + 256B	512MB	10	128,000
	AVX			4KB	32ns
2011	Sandybridge	128B + 512B	4GB	6	1,000,000
	AVX512			4KB	16ns
2017	Skylake	128B + 2048B	64GB	1.9	16,000,000

Summary...

- 3D and 2.5D in package memory alleviates bandwidth constraints
- · Massive floating point throughput for weakly coupled problems, or problems of limited size
 - Intel Knights Landing: 0.5-1TF/s single node SP for QCD
 - Nvidia Pascal: 1-2 TF/s single node SP for QCD
 - Nvidia Volta: 2-3 TF/s single node SP for QCD
 - Nvidia Volta: 100+ TF/s half precision AI
- Interconnects are not keeping pace
- · HPC codes and algorithms must adapt or die

Some controversial commentary

- The promise of GP-GPU has to some degree fallen victim to a market segmentation strategy
 - first person shooters pay \$ 800 USD,
 - cancer researchers pay \$ 10000 USD,
 - is this the ideal scenario?
- · Desperately need glueless interconnect from compute chips for strongly coupled problems
 - NVlink provides this but does not scale beyond 8-16 GPU's
 - On-package Omnipath Intel parts interesting; dual rail system uptake limited due to switch and cable costs
 - · Distributed machine learning may end up driving this
- Linux VM has significant shortcomings for cluster nodes. 2MB base page Linux-for-HPC, or lightweight kernel?
- I have not addressed FPGA's: because they do not have the memory, I/O systems, flop/s to compete with Nvidia