
Exascale HPC Technologies Performance, Portability, and Scalability

Peter Boyle
University of Edinburgh (Theoretical Particle Physics)

Alan Turing Institute (Intel ATI codesign project for Machine Learning)

• Exascale processor landscape

• Performance portability

• Interconnects

• Some QCD examples

• What can go right
• What can go wrong
• Importance of deterministic good performance

• Floating point is now free

• Data motion is now key

• Feeding the beast is the problem 1

4. Performance Results
4.1 STREAM
To measure the memory bandwidth performance, which can signif-
icantly impact many scientific codes, we ran the STREAM bench-
mark on each of the test platforms. For each platform, we config-
ured the test to utilize 60% of the on–node memory. For Hopper
and Edison, we ran separate copies of STREAM on each of the
NUMA domains and used enough OpenMP threads to fill each do-
main. For Mira, we only ran one instance of the benchmark and ran
with 64 OpenMP threads. The reported STREAM Triad results are
as follows: Hopper - 53.9 GB/s, Edison - 103.3 GB/s, Mira - 28.6
GB/s per node.

Knowing the relative magnitude of the memory bandwidth be-
tween machines can be useful when comparing the performance
of codes that are memory bandwidth sensitive. In Figure 3, we
show roofline models of the three test platforms using the mea-
sured STREAM values and the known peak gigaflops/s/core rate
defined by each platform’s CPU clock speed and peak flops/clock.
The roofline model [15] is a convenient visual means of identify-
ing if a code is compute bound or memory bandwidth bound and
can be used to guide optimization efforts. If a code makes good
use of spatial and temporal locality in its memory references, the
memory subsystem should be able to keep the vector units of the
CPU full and thus the code should operate at near the peak floating
point rate (compute bound). If not, a code’s performance will be
limited by the memory bandwidth (memory bandwidth bound). In
the roofline model, these two variables, floating point performance
and memory bandwidth, are assumed to be related through opera-
tional intensity, i.e the number of floating point operations per byte
of DRAM traffic. Thus, the roofline of a platform is defined by the
following formula

PeakGFlops/s = MIN(

PeakF loatingPointPerformance

PeakMemoryBandwidth ⇤ OperationalIntensity)

The roofline for each compute platform can be seen to be divided
into two segments. The horizontal segment represents the upper
floating point limit imposted by the architecture. The sloped portion
of the roofline represents the upper limit of performance imposed
by the peak memory bandwidth of the system.

If we now measure the compute intensity and gigaflops/s rate
of a code we can plot them in the figure. Codes which tend to
fall on the horizontal portion of the roofline for a platform are
considered to be compute bound as their performance is limited by
the number of floating point operations that a CPU can execute each
clock cycle. Codes which fall on the sloping part of the roofline are
considered to be limited by memory bandwidth.

Figure 3 shows the measured performance of each of the Trin-
ity/NERSC8 applications when running each application’s ‘large’
test case on Hopper using an MPI-only execution model. The oper-
ational intensity for each code was measured using Cray’s Craypat
performance analysis tool and the gflops/s rates were determined
using the floating point counts reported from IPM performance
analysis tool and the run time values returned by each application.
The results in this figure point out that the applications in the pro-
curement, and those studied in more detail in this paper, are limited
in performance by the rate that the memory subsystem can feed the
processor. Simply adding more floating point capability will not in-
crease performance. The other observation is that all of the bench-
marks have relatively low computational intensity (<1), though it
must be stressed that that the data points shown are for the entire
code and not for any individual kernel which may show higher per-
formance. Because of this, it will be difficult for any of these appli-
cations to attain a platform’s peak floating point performance. This

fact may have an impact on both machine intercomparisons and the
selection of systems for procurement. In the former case, architec-
tures become compared based largely on their peak memory band-
width and not the inherent computational advantages available on
each processor. In the latter case, application developers and sys-
tem procurement teams may find it easier to choose machines with
higher peak memory bandwidth rather than refactoring their appli-
cations, or researching new algorithms, to better use the CPU. As
CPUs increase in core count and complexity these issues may be-
come increasingly prominent.

Figure 3: Roofline model of test systems with NERSC8/Trinity
benchmarks. For each of the test systems, the plot shows a roofline
model (colored lines) constructed from the peak floating point
performance per core of each system and the measured memory
bandwidth from the STREAM benchmark. Each colored triangular
symbol marks the results obtained from Hopper for test cases that
run on order 1000 nodes.

4.2 NERSC-6 Applications on Hopper and Edison
While the majority of this paper focuses on performance analysis of
codes selected from the Trinity-NERSC8 benchmark suite, we also
present results for the NERSC-6 application benchmarks[2] to fa-
cilitate comparison to previous benchmarking work on other com-
putational platforms. Like the Trinity-NERSC8 suite, the NERSC-
6 benchmarks were selected to span an appropriate cross-section of
scientific domains and algorithms. The Community Atmospheric
Model (CAM) is a significant component of the climate science
workload; it uses 3-dimensional finite volume methods to simu-
late dynamical (e.g. fluid flow) and physical (e.g. precipitation)
processes in the atmosphere. GAMESS implements a broad range
of ab initio models of quantum chemistry. IMPACT-T is a rela-
tivistic particle-in-cell code used to simulate accelerator physics.
MAESTRO is an astrophysics code that uses algebraic multigrid
methods to simulate pre-ignition phases of Type-IA supernovae.
PARATEC is a plane-wave density functional theory code used for
materials science; its functionality and performance characteristics
are quite similar to MiniDFT, which has supplanted it in the Trinity-
NERSC8 benchmark suite. GTC and MILC are included in both
benchmark suites and were described in Section 3. Detailed de-
scriptions of the NERSC-6 codes and inputs are available in ref. [2].

One feature that distinguishes Edison’s Ivy Bridge processors
from Hopper’s Magny–Cours processors is the availability of Hy-
perthreading Technology. When hyperthreading is enabled, each
physical core presents itself to the OS as two logical cores. The log-
ical cores share some resources of the physical core (such as cache,
memory bandwidth and FPUs), but have independent architectural
states. Hyperthreading has the potential to increase resource uti-
lization if an application cannot exhaust a critical shared resource

4

• Berkely roofline model: Flops/Second = (Flops/ Byte)× (Bytes/Second)
• One dimensional - only memory bandwidth is considered
• Arithmetic intensity = (Flops/ Byte)

• With more care can categorise data references by origin
• Cache, Memory, Network

1possibly except for bitcoin mining

Immediate roadmap

 0.1

 1

 10

 100

 1000

 2010 2012 2014 2016 2018 2020 2022

P
F
/s
y
s
te
m

IBM-BGQ/Mira
Intel-Broadwell/Cori1

Intel-KNL/Cori2
Intel-KNL/Oakforest PACS
IBM/Nvidia/Summit/Sierra

Intel-KNH/Aurora
Fujitsu-ARM/post-K

Frontier/ORNL

 0.1

 1

 10

 100

 1000

 2010 2012 2014 2016 2018 2020 2022

S
P

T
F
/n
o
d
e

IBM-BGQ/Mira
Intel-Broadwell/Cori1

Intel-KNL/Cori2
Intel-KNL/Oakforest PACS

IBM/Nvidia/Summit

 0.1

 1

 10

 100

 1000

 2010 2012 2014 2016 2018 2020 2022

c
o
m
m
s

G
B
/s

/
n
o
d
e

IBM-BGQ/Mira
Intel-Broadwell/Cori1

Intel-KNL/Cori2
Intel-KNL/Oakforest PACS
IBM/Nvidia/Summit/Sierra

• 400x+ increase in SP node performance accompanied by NO increase in interconnect

• FP16 gain is 6x more again!

• US exascale systems planned in 2021, 2022 (Aurora/Argonne, Frontier/ORNL)

• Not a case of business as usual for algorithms!

Growing on chip parallelism...

Core simd Year Vector bits SP flops/clock/core cores flops/clock
Pentium III SSE 1999 128 3 1 3
Pentium IV SSE2 2001 128 4 1 4

Core2 SSE2/3/4 2006 128 8 2 16
Nehalem SSE2/3/4 2008 128 8 10 80

Sandybridge AVX 2011 256 16 12 192
Haswell AVX2 2013 256 32 18 576

KNC IMCI 2012 512 32 64 2048
KNL AVX512 2016 512 64 72 4608

Skylake AVX512 2017(?) 512 64 28 1792

• Growth in multi-core parallelism, growth in SIMD parallelism

• Growth in complexity of memory hierarchy

• Industry standard response is: “dump it on the programmer”

Wireloads and geometry

C3
C2

C4

C5

W

L

S

C1

C3

Physics creates computer architecture: model wire as rod of metal L×πr2

• Charge: Gauss’s law

2πrLE =
Q

ε
⇒ E =

Q

ε2πrL

• Capacitance
C = Q/V = 2πLε/log(r0/r)

• Resistance

R = ρ
L

πr2

• Time constant

RC = 2ρε
L2

r2
/ log(r0/r)∼ L2

r2

RC wire delay depends only on geometry: Shrinking does not speed up wire delay!

• “copper interconnect” (180nm) and “low-k“ dielectric (100nm) improved ρ and ε

Multi-core design with long-haul buses only possible strategy for 8 Billion transistors

• Low number of long range “broad” wires (bus/interconnect)

• High number of short range “thin” wires

Exciting technology directions

3D memory integration

• Apply to memory buses with through-silicon-via’s (TSVs)!

• 10x increase in memory throughput at fixed power

• Exploited in Nvidia GPU’s, AMD GPU’s, Intel Knight’s Landing ,
• Not yet exploited in Intel or AMD server parts /

• Direct mapped cache or distinct NUMA domain?

Network integration

• KNL-F has on package 2 x 100 Gbit/s Omnipath interfaces (marginal cost $300 per node)

• Skylake/Purley will also integrate Omnipath

• Nividia can interconnect up to 8 GPU’s with NVLINK

How to balance the engineering effort between subsystems is key

Processor technologies

• HBM / MCDRAM (500 - 1000 GB/s)
• Intel Knights Landing (KNL) 16 GB (AXPY 450 GB/s)
• Nvidia Pascal P100 16-32 GB (AXPY 600 GB/s)
• Nvidia Volta V100 16-32 GB (AXPY 840 GB/s)

• GDDR (500 GB/s)
• Nvidia GTX1080ti

• DDR (100-150 GB/s)
• Intel Xeon, IBM Power9, AMD Zen, Cavium/Fujitsu ARM
• ... when will these adopt 3D memory & how to organise?
• Cache vs. NUMA domain

Chip Clock SM/cores SP madd issue SP madd peak TDP Mem BW

GPU
P100 1.48 GHz 56 SM’s 32 112×2 3584 10.5 TF/s 300W $ 9000 700 GB/s

GTX1080ti 1.48 GHz 56 SM’s 32 112×2 3584 10.5 TF/s 300W $ 800 500 GB/s
V100 1.53 GHz 80 SM’s 32 160×2 5120 15.7 TF/s 300W $ 10000 840 GB/s

Many-core
KNL 1.4 GHz 36 L2 x 2 cores 32 72×2 2304 6.4 TF/s 215W $ 2000 450 GB/s

Multi-core
Broadwell 2.5 18 cores 16 18×2 576 1.4 TF/s 165W $4000 55 GB/s
Skylake 3.0 28 cores 32 28×2 1792 5.3 TF/s 205W $8000 95 GB/s
Skylake 3.0 12 cores 16 12×2 384 1.15 TF/s 85W $1000 80 GB/s

IBM’s Summit
• ORNL, 4608 nodes, will likely take top500 lead next week

• 200 PF/s (double) at 10MW, 3 EF/s half precision for AI !
• approx $200M

• Each node:
• 6 V100 GPU’s, 90TF/s single precision, 750TF/s half precision for AI
• 5000+ GB/s memory bandwidth

• Strong interior, NVlink 75+75 GB/s per link interconnect (450 GB/s per GPU) ,
• Dual rail 50GB/s EDR exterior interconnect

• 100:1 memory to network ratio /
• Explicitly programme GPU-GPU and MPI (EDR) transfers for performance

Chapter 2. System architecture 15

Figure 2-6 shows the logical system diagram for the Power AC922 server (8335-GTW) with
six connected GPUs, where the six NVLINK Bricks are divided into three groups of two
Bricks, enabling 100 GBps buses between GPUs, but enabling more connected GPUs.

Figure 2-6 The Power AC922 server model 8335-GTW logical system diagram

2.2 Processor subsystem

This section introduces the current processor in the Power Systems product family and
describes its main characteristics and features in general.

The POWER9 processor in the Power AC922 server is the current generation of the POWER
processor family. Based on the 14 nm FinFET Silicon-On-Insulator (SOI) architecture, the
chip size is 685 mm x 685 mm and contains eight billion transistors.

POWER9
CPU 0

POWER9
CPU 1

X Bus
64 GBps

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

NVIDIA
Volta
GPU

NVIDIA
Volta
GPU

NVIDIA
Volta
GPU

NVIDIA
Volta
GPU

NVIDIA
Volta
GPU

NVIDIA
Volta
GPU

NVLink 2.0

PCIe Gen4 x8
CAPIPCIe Gen4 x16 - CAPI PCIe Gen4 x16 - CAPI

PCIe Gen4 x4

PEX

Internal Storage
Controller

2 x 1Gbps Ethernet
Broadcom BMC

Front
USB

Internal
USB

Rear
USBVGAIPMI

USB

2 x
RJ-45

PCIe Gen2 x4

PCIe Gen2 x2 PCIe Gen2 x1

PCIe Gen2 x4 PCIe Gen2 x4

PCIe Gen4 x8PCIe Gen4 x8

15 GBps per channel

50 GBps per channel
(Brick)

100 GBps aggregated
bandwidth
(2 Bricks)

NVLink 2.0

HGX-2

• NVlink has been given an accompanying switch NVswitch enabling 16 GPU
HGX-2 systems

• Very strong, and very expensive base node; sticking a network card on-it is not a
solution for large systems

• Would desperately like to see this in an extensible mesh

Multiple chips/GPUs per node

Multi-socket servers: NUMA aware code

• hybrid OpenMP + MPI

• Use 1:1 mapping between MPI ranks and sockets

• Unix shared memory between sockets (over UPI)

• Reserve MPI transfers for inter-node

Multi-GPU servers: NVlink aware code

• Use 1:1 mapping between MPI ranks and GPU’s

• Use Cuda to open up direct GPU-GPU device memory access over NVlink

• Reserve MPI transfers for inter-node, direct to GPU if possible

09/02/2017, 11)59Isometric Drawing Tool

Page 1 of 2https://illuminations.nctm.org/activity.aspx?id=4182

GRADE:

3-5, 6-8, 9-

12

STANDARDS:
MATH CONTENT:

Geometry

Use this interactive tool
to create dynamic
drawings on isometric

dot paper. Draw figures using edges, faces, or cubes. You can shift, rotate, color, decompose, and view in 2‑D or 3‑D. Start by
clicking on the cube along the left side; then, place cubes on the grid where you would like them.

This interactive is optimized for your desktop and tablet.

Activity Instructions Exploration Related Resources Print All

Select the cube, face, or segment along the left navigation.
Then, place the object on the grid where you want it. If your selection is red, on the grid, then it is a location where you can not place the object.

HINT

Draw your shape from back to front and from bottom to top, to assure proper alignment of cubes.
When adding adjacent cubes, be sure to click on the face of the cube you want to be touching.

Create Mode

There are two ways to move objects:

1. Using the Arrow. Simply select and drag the object(s) to a new location.
2. Unit Movement Buttons

The other buttons along the top navigation serve various functions:

 Rotate the entire figure by dragging the image or by using the sliders.

Isometric Drawing Tool

Performance portable programming

Caches and locality

Memory systems are granular

• Big gain from spatial locality of reference: use everything that gets transfered!

You don’t buy a multipack if you only want one beer!

CPU SIMD model

SIMD brings a new level of restrictivness that is much harder to hit

• Code optimisations should expose spatial operation locality

• Obvious applications in array and matrix processing but hard in general

SIMD CPU

Single
instruction

W2

Integer

FP

Memory

word

Page 7

W1 W3

word word word

P7, W0

P7, W0

contiguous block memory accesses with same operations performed on adjacent words .

• Both granular memory transfers and SIMD execution need to be exploited

• typically drop to “intrinsic functions” or assembly for CPU’s

• change data layout from the standard language defined array ordering

• we are fighting against the languages since these dictate memory layout!

GPU SIMT model

SIMT — coalesced reads

Single
instruction

Multiple data

Integer

FP

Memory

Page 1 Page 2 Page 3 Page 4

Cache

CPU GPU

Integer scalar vector
Floating vector vector

Caching yes yes

Contiguous vec loads default dynamically coalesced
Random vec loads gather/scatter default

Thread divergence write masks hardware managed

• For performance must arrange to have same operation applied to consecutive words

• Coalesced accesses detected at runtime by GPU’s
• granular memory transfers and SIMD execution can then be exploited
• Performance loss if threads diverge in address or control flow

contiguous block memory accesses with same operations performed on adjacent words .

Consistent emerging solution : advanced C++

Granularity exposed through ISA/Performance
⇒ data structures must change with each architecture

OpenMP, OpenAcc do not address data layout

Several packages arriving at similar conclusions:

• Kokkos (Sandia)

• RAJA (Livermore)

• Grid (Edinburgh)

Use fairly advanced C++11 features, inline header template library

• Traditional OOP performance negative (virtual functions, passing objects, STL)

• Discipline and coding standards are required.

Consistent emerging solution : advanced C++

1. Abstract arrays & accessors through C++ container templates

2. Data layout changes with architecture
• Trigger a partial vector transformation to suit architecture via template parameters

3. Capture potentially offloaded code in device lambda function

parallel_for(i,0,N, [=] accelerator (int i) mutable { {

// Lambda captures a,b,c,d, and constructs device function object

a[i] = b[i] + c[i]*sin(d[i]);

});

• Raja: exposes policy controls for where loop executes
https://github.com/LLNL/RAJA

• Kokkos: exposes policy controls for where loop executes, and views of layout
https://github.com/kokkos

• Grid: hide in higher level data parallel interface for structured grids
inspired by QDP-JIT (JLAB), but without the JIT

GRID data parallel template library

• www.github.com/paboyle/Grid, arXiv:1512.034872

Ordering Layout Vectorisation Data Reuse

Microprocessor Array-of-Structs (AoS) Hard Maximised

Vector Struct-of-Array (SoA) Easy Minimised

Grid Array-of-structs-of-short-vectors (AoSoSV) Easy Maximised

• Automatically transform layout of arrays of mathematical objects using vSIMD template parameter

• Conformable array operations are data parallel on the same Grid layout

vRealF, vRealD, vComplexF, vComplexD

template<class vtype> class iScalar

{

vtype _internal;

};

template<class vtype,int N> class iVector

{

vtype _internal[N];

};

template<class vtype,int N> class iMatrix

{

vtype _internal[N][N];

};

typedef Lattice<iMatrix<vComplexD> > LatticeColourMatrix;

typedef iMatrix<ComplexD> ColourMatrix;

• Internal type can be SIMD vectors or scalars

LatticeColourMatrix A(Grid);

LatticeColourMatrix B(Grid);

LatticeColourMatrix C(Grid);

LatticeColourMatrix dC_dy(Grid);

C = A*B;

const int Ydim = 1;

dC_dy = 0.5*Cshift(C,Ydim, 1)

- 0.5*Cshift(C,Ydim,-1);

• High-level data parallel code gets 65% of peak on AVX2

• Single data parallelism model targets BOTH SIMD and
threads efficiently.

2Also: good, flexible C++ object serialisation using variadic macros. IDL’s not required.

Grid single node performance

Architecture Cores GF/s (Ls x Dw) peak
Intel Knight’s Landing 7250 68 770 6100

Intel Knight’s Corner 60 270 2400
Intel Skylakex2 48 1200 9200

Intel Broadwellx2 36 800 2700
Intel Haswellx2 32 640 2400

Intel Ivybridgex2 24 270 920
AMD EPYCx2 64 590 3276

AMD Interlagosx4 32 (16) 80 628

• Dropped to inline assembly for key kernel in KNL and BlueGene/Q

• EPYC is MCM; ran 4 MPI ranks per socket, one per die

Common source GPU port is functional but under tuning.

• Simple data parallel code saturates memory bandwidth

• Use Unified Virtual Memory (i.e. automatic host-device transfers)

Interconnects 3

3NB: programmed with MPI (message passing interface)

Interconnect technologies

• Integration of network on package useful: SKL-F, KNL-F

• Recall IBM BlueGene integrated torus router on compute chip

• Silicon photonics

• 100Gbit/s copper cables cost under 100 USD
• 100Gbit/s active optical cables (4 bits) cost around 1000 USD

• Hopefully silicon photonics can lower cost of optics

Never before in the field of computing, has so much been paid, by so many, for so few bits!

QCD sparse matrix PDE solver communications

• L4 local volume (space + time)

• finite difference operator 8 point stencil

Action Fermion Vol Surface Ls Flops Bytes Bytes/Flops

DWF L4 ×N 8×L3 16 Ls ×1320 Ls ×864 0.65

• ∼ 1
L of data references come from off node

Scaling QCD sparse matrix requires interconnect bandwidth for halo exchange

Bnetwork ∼
Bmemory

L
×R

where R is the reuse factor obtained for the stencil in caches

• Aim: Distribute 1004 datapoints over 104 nodes

QCD on DiRAC BlueGene/Q (2012-2018)

0

1000

2000

3000

4000

5000

6000

7000

0 25000 50000 75000 100000

Weak Scaling for DWF BAGEL CG inverter

S
p

ee
d

up
 (T

Fl
op

s)

of BG/Q Nodes

Code	
 developed	
 by	
 Peter	
 Boyle	
 at	
 the	
 STFC	
 funded	
 DiRAC	
 facility	
 at	
 Edinburgh

Sustained 7.2 Pflop/s on 1.6 Million cores (Gordon Bell finalist SC 2013)
Edinburgh system 98,304 cores (installed 2012)

QCD on DiRAC BlueGene/Q (2012-2018)

• Integrated router and large, midplane racks suppress optics cost by surface-to-volume

• No “extra” HFI components or switches: marginal cost of pennies per node.

• Arguably the whole point of VLSI...

Interconnect Requirements

Bnetwork ∼
Bmemory

L
×R

• Project network requirement for balanced communication and computation

Nodes Memory (GB/s) Bidi network requirement (GB/s)
L=10 L=16 L=32 L=64

2xBroadwell 100 100 16 8
KNL 400 100 64 32
P100 700 200 128 64
V100 840 325 203 100

Summit
6xV100 5040 - 1950 1200 600

Node Network Delivered GB/s Require

KNL Cray Aries 11 64
KNL Single EDR 23 64
KNL Dual EDR 45 64
KNL Dual Omnipath 45 64

Summit Dual EDR 45 1200

• Cori and Theta (Cray Aries) could really have done with dual rail EDR or Omnipath

• Dual 100GBit/s KNL has proved scalable on fine operator (e.g. Brookhaven cluster)

Networks and locality

Can we reduce the cost of networks?

• We accept locality optimisation in almost every level of a computing system

• Providing full bisection bandwidth through a fat-tree switch is expensive

• Torus networks have done well in the past; need smart application mapping in large systems

• e.g. cartesian communicators

• KNL-F and SKL-F integrate two HFI’s on package; very few dual rail systems due to switch
& cable costs

KNL with Omni-Path™
Omni-Path™ Fabric integrated on package

First product with integrated fabric

Connected to KNL die via 2 x16 PCIe* ports
Output: 2 Omni-Path ports

� 25 GB/s/port (bi-dir)

Benefits
� Lower cost, latency and power
� Higher density and bandwidth
� Higher scalability

17

KNL

16 GB
MCDRAM

Omni
Path

x16 PCIe*

DDR 4

Omni
Path
ports
100
Gb/s/
port

X4 PCIe

Package

*On package connect with PCIe semantics, with MCP optimizations for physical layer

• BlueGene/Q : integrated routing network on compute chip ; the point of VLSI
As near to glueless assembly as possible with marginal additional cost

HPE ICE-XA hypercube network

• Small project with SGI/HPE on Mellanox EDR networks

• Embed 2n QCD torus inside hypercube so that nearest neigbour comms travels single hop
4x speed up over default MPI Cartesian communicators on large systems
⇒ Customise HPE 8600 (SGI ICE-XA) to use 16 = 24 nodes per leaf switch

DiRAC HPE ICE-XA hypercube network

• Edinburgh HPE 8600 system (Installed April 2018)

• Low end Skylake Silver4116, 12 core parts
• Single rail Omnipath interconnect
• Relatively cheap node: high node count and scalability

Tesseract performance per node vs nodes, volume

G
F/

s
pe

r n
od

e

0.0

150.0

300.0

450.0

600.0

Nodes

1 16 32 64 128 256 512

12^4 16^4 24^4

Same tightly coupled problem on Summit

Use Nvidia QUDA code: This is a bad (apples to oranges) comparison at present for three reasons

1. Tesseract node is 1/2 price of a Volta GPU, currently 2x performance

• But, Summit has 2x better price/performance for communication light code

2. Summit does not yet have Gpu Direct RDMA (GDR) enabling MPI from device memory

• Anticipate 4x gain when GDR is enabled on Summit
• If this bears up, break even on price/performance for this interconnect heavy code

3. Many problems, even in QCD, are not so communication heavy (e.g. multigrid Wilson)

Summit performance per V100 vs gpu count

G
F/

s
pe

r G
PU

0

550

1100

1650

2200

GPU’s (6 = 1 node)

1 6 12 48

12^4 16^4 24^4

All this worked out the box right?

• Collaboration with Intel: concurrency updates to Intel MPI and Omnipath software stack

• Reentrancy to MPI needed with hybrid threads + MPI when many HFI’s

• Avoid 4KB pages due to per page software overhead

https://arxiv.org/pdf/1711.04883.pdf

Accelerating HPC codes on Intel® Omni-Path Architecture networks: From particle
physics to Machine Learning

Peter Boyle,1 Michael Chuvelev,2 Guido Cossu,3 Christopher Kelly,4 Christoph Lehner,5 and Lawrence Meadows2

1The University of Edinburgh and Alan Turing Institute
2Intel

3The University of Edinburgh
4Columbia University

5Brookhaven National Laboratory

We discuss practical methods to ensure near wirespeed performance from clusters with either one or two
Intel® Omni-Path host fabric interfaces (HFI) per node, and Intel® Xeon Phi(TM) 72xx (Knight’s Landing)
processors, and using the Linux operating system.

The study evaluates the performance improvements achievable and the required programming approaches
in two distinct example problems: firstly in Cartesian communicator halo exchange problems, appropriate for
structured grid PDE solvers that arise in quantum chromodynamics simulations of particle physics; and sec-
ondly in gradient reduction appropriate to synchronous stochastic gradient descent for machine learning. As
an example, we accelerate a published Baidu Research reduction code and obtain a factor of ten speedup over
the original code using the techniques discussed in this paper. This displays how a factor of ten speedup in
strongly scaled distributed machine learning could be achieved when synchronous stochastic gradient descent
is massively parallelised with a fixed mini-batch size.

We find a significant improvement in performance robustness when memory is obtained using carefully (guar-
anteed) allocated 2MB “huge” virtual memory pages, implying that non-standard allocation routines should be
used for communication buffers. These can be easily accessed via a LD PRELOAD override in the manner
suggested by libhugetlbfs, or accessed by appropiate mmap calls. We make use of the Intel® MPI 2019 library
“Technology Preview” and underlying software to enable thread concurrency throughout the communication
software stack via multiple PSM2 endpoints per process and use of multiple independent MPI communicators.
When using a single MPI process per node, we find that this greatly accelerates delivered bandwidth in many
core Intel® Xeon Phi processors.

I. INTRODUCTION

Modern massively parallel supercomputers are composed of many (relatively) commodity computing elements, which
may communicate using a variety of interconnect technologies which are usually programmed through the now stan-
dard Message Passing Interface (MPI). State of the art interconnect technologies are able to offload the work of copying
memory resident data to and from the network, and enable zero copy direct memory access where data is read from or
deposited directly to user space buffers without any intermediate copy to kernel or device driver memory.

This study evaluates the performance improvements achievable and the required programming approaches: firstly
in Cartesian communicator halo exchange problems, appropriate for structured grid PDE solvers; and secondly in
gradient reduction appropriate to synchronous stochastic gradient descent for machine learning. The systems under test
will use either one or two Intel® Omni-Path(TM) [1, 2] host fabric interfaces (HFIs) per node, and Intel® Knight’s
Landing(TM) [3] processors, and use the Linux operating system which has become the dominant software platform
for High Performance Computing (HPC).

The structure of this paper is as follows: we will firstly discuss some background computer architecture, explaining
some underlying interconnect and operating system concepts at a basic level suitable to computational scientists who
are not experts in computer design; we will then present recommend techniques to introduce concurrent multithread
reentrancy through the Intel MPI 2019 Technology Preview; we will also show that whether or not the new MPI
library is used, there is a large improvement in the stability of the performance afforded by the reliable use of explicit
huge memory page allocations due to the suppression of per-page software overhead (which may depend on the page
fragmentation history of a node prior to job execution; something beyond the control of a user).

II. BACKGROUND

In order to understand the reason for the improvements discussed in this paper, some background knowledge of the
handling of virtual memory and device access by modern operating systems is required, and a brief summary is given

ar
X

iv
:1

71
1.

04
88

3v
1

 [c
s.D

C
]

13
 N

ov
 2

01
7

• Edinburgh-Brookhaven-Columbia-Intel paper

• Brookhaven dual rail KNL/OPA system

 1000

 10000

 100000

 100000 1x10
6

 1x10
7

B
id
ir
e
c
tio
n
a
l
M
B
/s

p
e
r
K
N
L

n
o
d
e

Packet size (bytes)

Intel MPI 2019 huge pages, threaded
Intel MPI 2019 huge pages
Intel MPI 2018 huge pages

Intel MPI 2019 THP

Intel MPI 2018 THP

• Baidu “optimised reduction” code available open source online

• http://research.baidu.com/bringing-hpc-techniques-deep-learning/

• https://github.com/baidu-research/baidu-allreduce

• DiRAC procurement benchmarks also required software updates for Mellanox HPCX 2.0

https://www.nextplatform.com/2017/11/29/the-battle-of-the-infinibands/

Importance of deterministic performance

• Linux VM will fragment over time under use; probability of transparent huge pages decreases

• In a 1000 node system, random slow down translates to “convoy” mode for the whole system

• Similar effects from dynamic frequency scaling events

• Can manifest itself unexplained poor scalability

Arch/ Page Time to read page /
Year CPU Reg file Memory Page/RF Page count

intel32 4KB 64 us
1985 80386 32B 640KB 127 160

+x87 4KB 16 us
1993 80486DX 32B +80B 4MB 36 1024

intel64 4KB 128ns
2003 Pentium4 128B + 256B 512MB 10 128,000

AVX 4KB 32ns
2011 Sandybridge 128B + 512B 4GB 6 1,000,000

AVX512 4KB 16ns
2017 Skylake 128B + 2048B 64GB 1.9 16,000,000

Summary...

• 3D and 2.5D in package memory alleviates bandwidth constraints

• Massive floating point throughput for weakly coupled problems, or problems of limited size

• Intel Knights Landing: 0.5-1TF/s single node SP for QCD
• Nvidia Pascal: 1-2 TF/s single node SP for QCD
• Nvidia Volta: 2-3 TF/s single node SP for QCD
• Nvidia Volta: 100+ TF/s half precision AI

• Interconnects are not keeping pace

• HPC codes and algorithms must adapt or die

Some controversial commentary

• The promise of GP-GPU has to some degree fallen victim to a market segmentation strategy

• first person shooters pay $ 800 USD,
• cancer researchers pay $ 10000 USD,
• is this the ideal scenario?

• Desperately need glueless interconnect from compute chips for strongly coupled problems

• NVlink provides this but does not scale beyond 8-16 GPU’s
• On-package Omnipath Intel parts interesting; dual rail system uptake limited due to

switch and cable costs
• Distributed machine learning may end up driving this

• Linux VM has significant shortcomings for cluster nodes. 2MB base page Linux-for-HPC, or
lightweight kernel?

• I have not addressed FPGA’s: because they do not have the memory, I/O systems, flop/s to
compete with Nvidia

