Real time data analysis with the ATLAS Trigger at the LHC in Run-2

By Pierre-Hugues Beauchemin

On behalf of the ATLAS Collaboration

The Context:

The LHC physics program requires high statistic data samples to:

- Have sensitivity to new physics in very small phase space regions or with highly exclusive final states;
- Reach very high precision in Standard Model measurements.
 - The LHC is constantly increasing the instantaneous luminosity delivered to the experiments

The Problem:

This is very challenging for ATLAS (and CMS) data-taking in Run-2:

- The Data Acquisition System can only cope with a maximal rate of events to be processed (CPU and timing) and stored;
- At Run-2 luminosity (peak at 21×10⁻³³ cm⁻² s⁻¹), a very high number of pile-up events degrade the performance of the data-taking process.

The Solution:

The ATLAS Trigger system, both the hardware and software components, has been upgraded in multiple ways permitting real time analyses that:

- Keep the phase space of the stored events large enough for a the physics program to be successful;
- Control the rate by improving on the purity of the datasets collected and keeping a linear dependence on pile-up increase.

A few examples:

A new E_T^{miss} algorithm suppressing pile-up

TGC coincidences to remove muons not from vertex

High performance of the tau trigger using a BDT at HLT