Clock Distribution and Readout Architecture for the ATLAS Tile Calorimeter at the HL-LHC

Fernando Carrió, on behalf of the ATLAS
Tile Calorimeter system
Instituto de Física Corpuscular (CISC-UV)

Introduction

- The Tile Calorimeter is a segmented calorimeter made of steel plates and plastic scintillator which covers the most central region of the ATLAS experiment
 - 4 partitions: EBA, LBA, LBC, EBC
 - Each partition has 64 modules → each module hosts up to 45 Photo Multiplier Tubes (PMTs)

	Present	Phase II
Total BW	~205 Gbps	~40 Tbps
N. fibers	256	4096
BW/module	800 Mbps	160 Gbps
Nb. boards	32	32
Nb. crates	4 (VME)	4 (ATCA)
In BW/board	6.4 Gbps	625 Gbps
Out BW/board _{DAQ}	3.2 Gbps	40 Gbps
Out BW/board _{L0/L1}	Analog	500 Gbps

- The LHC plans a major upgrade around 2024

 → increase the instantaneous luminosity by a factor 7.5
 - Complete redesign of the detector electronics with a new readout strategy
 - All detector data will be transmitted to the offdetector electronics for every bunch crossing
 - Full granularity and digital inputs to the ATLAS trigger system

Demonstrator Upgrade project

- Evaluation the new readout architecture and trigger system interfaces before the HL-LHC
- One Demonstrator module equipped with the upgraded electronics and operated and read out with the PreProcessor module (TilePPr)
 - Upgraded readout architecture but keeping backward compatibility with the current DAQ system

