
A General Purpose FPGA-based
Programmable Digital Patter
Generator

Stefano russo
Williamsburg 06/13/2016

2

Motivation

You maybe don’t know yet but
you really, really, really

NEED…

3

Motivation

A Digital Patter
Generator

implemented in FPGA

4

Originally developed to drive CCDs,
it is very flexible and can be used for
different applications e.g.
ASICs characterization.

5

Main features (as built):

•  32 outputs and a 10 ns resolution over the entire sequence

•  Patterns from 20 ns to minutes of length

•  Tightly controlled timing over the entire sequence

•  Processor like architecture fully programmable by the user

•  Very small footprint

6

Poster session 2 n.446

stefano russo
srusso@slac.stanford.edu

Summary

A General Purpose FPGA-based
Programmable Digital Patter Generator

A pattern generator on a Field Programmable Gate Array (FPGA) is presented.
The proposed design feature 32 outputs a 10 ns time resolution and a fully programmable
structure that allows the generation of patterns from 10 ns to minutes of length. The
architecture looks like a simple processor hence the pattern is defined writing a program
that resides inside the FPGA’s memory.
The sequence execution time is tightly controlled to ensure a resolution of 10 ns over the
entire sequence without glitches and latencies. The design is written in vhdl and can be
ported on all kinds of FPGA.

In many modern physics experiments a fully synchronous programmable pattern generator
is often required. A typical case is represented by experiments that use Charge Coupled
Device (CCD) as detectors where many signals need to be generated in a timing
deterministic manner to read an image from this device.
Another field for a digital pattern generator is the design verification of electronics devices
where it is used to stimulate the Device Under Test (DUT).
A commercial pattern generator usually address the needs described above, but in some
specific cases, it is not practical or impossible to be used. An example is a telescope camera
built in a tight environment where a commercial CCD controlled would not fit. Another
case is a camera composed by hundreds of CCDs where the use of commercial controllers
would be very expensive. A way to address these difficulties is to implement a pattern
generator on an FPGA. This device is very flexible, not expensive, low power and digital
designs implemented on it can achieve high clock frequencies. Hence it is a perfect platform
to implement a pattern generator.

Architecture

Context

The patter generator also called sequencer is divided in 16 functions. Each function
generates a synchronous sequence of signals. The execution order of different functions is
written in a program that reside in the program memory.

The Function
The function is the sequencer basic element and is set by the user to generate a time
sequence of 32 output signals. Each function is divided in a maximum of 16 time slices.
Each time slice is defined as a period of time where the outputs have the same value;
therefore it is characterized by the binary state of each output (1 or 0) and by its time
interval. An outputs transition is done during the transition between two time slices.
To set a single time slice two configuration words are needed: a 32 bits word for the outputs
and a 16 bits word for the time interval. The smallest configurable function has to have 2
time slices.
A function starts executing the first time slice and goes on sequentially until either the 16th
time slice is executed or a time length value set at 0 is found. The time length is expressed
in units of 10ns. This gives a resolution of 10ns for the outputs transitions.

 Out	1

Out	2

Out	3

Out	31

Out	32

…

Time	slice	1
120	ns

Time	slice	2
200	ns

…

Time	slice	16
100	ns

The Program
The functions’ execution order is defined in program. The first 4 bits of each word in the
program contains an Operation Code (OP Code) that defines the meaning of the rest of
the word. 10 OP Codes are available:

-  0x1 – function execution;
-  0x2 – function execution with function pointer;
-  0x3 – function execution with repetitions pointer;
-  0x4 – function execution with function and repetitions pointers;
-  0x5 – jump to address;
-  0x6 – jump to address with address pointer;
-  0x7 – jump to address with repetitions pointer;
-  0x8 – jump to address with address and repetitions pointer;
-  0xE – subroutine trailer;
-  0xF – end of program;

Function Execution
When OP code 0x1 is called a function execution is requested and the program word is
defined as follows:

-  The Function Identification Number (ID) is the number used to identify the function

to be called.
-  An Infinite Loop option is available. The activation of this special flag force the system

to execute the same function until the loop is stopped. To exit form the loop two
different options are available: STEP command and STOP command.

-  Repetitions number is the field where the number of times a function executions is
specified. Writing a 0 makes the sequencer skipping the call.

31-28 27-24 23 22-0
OP code (0x1) Function ID Infinite Loop Repetitions

Jump to Address
The OP code 0x5 is used to jump to a specific program memory address to executing a so-
called Subroutine. A subroutine is a set instructions delimited by OP code 0xE. When the
execution of the subroutine is finished the program restarts from the jump address. In this
case the program word is defined as follows:

-  The Address is filed specify the position where the subroutine starts.
-  Repetitions number is the field where the number of times a subroutine executions is

specified. Writing a 0 makes the sequencer skipping the call.

31-28 27-26 25-16 22-0
OP code (0x5) Reserved MBZ Address Repetitions

Pointers
In the program memory the concept of pointer is implemented. By means of pointers some
parameters can be written in different memories and can be “recalled” from the program
memory. In the program memory, instead of the parameter, a memory address is written
and, during the program execution, this address is used to extract the corresponding value.

!!!LSST!Science!Ra+!PDR!•!February!26628,!2013 !2!

Example

START

func#4! func#4! func#4!
func#6!
∞! Func#3! Func#8! Func#3! Func#8!

START
TIME

STEP STOP

Add# OP#Code# Func#ID/Add# Infinite#Loop# Rep#

0! 1! Func!#!4! NO! 3!

1! 1! Func!#!6! YES! 666!

2! 5! 100! 666! 2!

3! F! 666!

..!

100! 1! Func!#!3! NO! 1!

101! 1! Func!#!8! NO! 1!

102! E! 666!

Resources Count
Slice LUT 2000

LUT used as Memory 1400
Slice Flip Flop 220

Implemented on a Xilinx
Kitex 7 160T

