A novel real-time radiation detector readout and acquisition system for PET

Detectors:

I. 12 detector panels;

Trans-axial view of a detection ring

- II. A detector panel:
 - 1. eight 8+8 MPPC arrays;
 - 2. four 15×15 LYSO arrays.

- II. Detector level (D-level) board:
 - 1. Sigma Delta Modulation Method
 - 2. 64 channels
- III. System level (S-level) board:
 - 1. Event coincidence & buffer
 - 2. High speed data transferring

Results:

- I. Good flood source;
- II. Good energy resolution(~18%).

1

Poster #511

A novel real-time radiation detector readout and acquisition system for PET Kun Hu, Xinyi Cheng, Yuncheng Zhong, Yiping Shao Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA

Introduction

Fig. 1. Schematic trans-axial view of the PET.

System configuration

- I. 12 detector panels;
- II. A detector panel: 1. eight 8+8 MPPCs;
- 2. four LYSO arrays.

Electronics:

- I. 12 detector level boards:
- 1. Sigma-Delta Readout; 2. 64 channels;
- 3. small size;
- II. System level board:
- 1. Event coincidence: 2. System control logic;
- 3. High-speed transferring.

Latest experimental results

 Waveforms of both representative negative and positive charges are shown in Fig. 7 & 8.

Fig. 6. The diagram (a) and photo (b) of detector readout electronic and acquisition system.

The readout electronics system for a detector module is shown in Fig. (6).

- Both show excellent linearity (Fig. 9).
- Detector crystals were well separated and identifiable generated with flood Na-22 source (Fig. 10, crystal flood source images).
- · Around 18% energy resolution (FWHM) was measured from a selected 1x1x20 mm3 LYSO crystal (Fig. 10, energy spectra measured from summed all crystals and from a single crystal).

- The feasibility of the low-cost, FPGA-based SDM circuit was developed and tested for a PET system.
- The improved SDM circuit can process both positive and negative

Summary

 The timing performance (~2.3 ns) of the current circuit needs to be further improved. New readout electronics is under

References:

1. Z. Zhao, Q. Huang, Z. Gong, et al., A Novel Read-out Electronics Design Based on 1-Bit Sigma-Delta Modulation, IEEE Trans. Nucl. Sci., vol. 64, no. 2, pp. 820-828, 2017.

A PET detector module consists of a 15 \times 15 array of 1 \times 1 \times 20 mm³ LYSO crystals with its two ends optically coupled to two Silicon Photomultiplier (SiPM) arrays (Hamamatsu Photonics K.K., \$13361-2050AE-08) (fig. 2). To reduce the total number of output channels, a row and column of MPPCs were internally connected inside the array to provide position-sensitive signals from orthogonally arranged row and column signals. Therefore, the readout electronics have to provide both negative and positive charge readout capability.

Readout electronics

Fig. 4. Readout circuit for negative charge.

Fig. 5. Readout circuit for positive charge.

The latest 1-bit Sigma-Delta Modulation (SDM) [1] method is used for charge readout. The initial version (Fig. 4) can only accept negative charge. In order to read out positive charge of MPPC array, a stage voltage is introduced in the SDM (Fig. 5).

Radiation Oncology

UTSouthwestern

2